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1 Context 

Within the H2020 CAMIVVER Project [1] Work Package 4 (WP4) aims to set up the 

framework for the development of an industrial calculation platform for neutronic lattice 

analysis and generating multi-parameter data libraries for core calculations using 

APOLLO3® [2], the new generation deterministic code developed by the Commissariat à 

l'Énergie Atomique et aux Énergies Alternatives (CEA) with the support of Framatome and 

Électricité de France (EDF). 

This document corresponds to Deliverable 4.6: “Assessment of new advanced 2D and 

3D models in neutronics multi-parametric library generation”, and it summarizes the work 

done inside the Task 4.4. The basic guidelines that were pursued in this task are of three 

types: 

1. We developed a new method to compute 3D typical geometries for reactor physics 

applications in order to correctly model phenomena that are currently neglected in 

classical calculations, such as flux depression in grids or the thermal flux pic 

present in the axial reflector. We modeled these 3D phenomena not only in static 

calculations (where reference Monte Carlo calculations can currently be used) but 

also along depletion (where Monte Carlo simulations are extremely expensive and 

thus difficult to carry out). This last aspect is the main theoretical progress we 

developed with respect to pre-existing literature. The development of this new 

method has produced, among conference papers, a journal paper [5]. In this note, 

we also discuss supplementary results to benchmark the proposed approach. 

2. We performed a set of studies to underweight the approximations that are usually 

adopted for heavy reflector modeling in the nuclear industry, for example French. 

Usually, the reflector model is based on slab preliminary lattice calculations [18] 

that are used to produce macroscopic cross sections under a conservation 

principle of some quantity of interest (typically albedos). These cross sections are 

then adopted to perform calculation at the core level, without the need for an 

explicit reflector model. It is worth noting that other approaches [19],[20],[21] exist 

where a 2D model of the reflector is used to produce macroscopic cross sections 

and an equivalence or discontinuity factors are then adopted when using these 

data at the core level. Here, we studied the impact of the homogenization of the 

water holes of the heavy reflector. This impact should certainly appear in models 

where no equivalence is done. Similarly, we analyzed the discrepancies 

introduced when the radial curvilinear geometry of the reflector is deformed into a 

Cartesian one. We also used the more refined self-shielding technique of 

APOLLO3®, in order to obtain the best estimate results. Investigations have been 

carried out on PWR configuration (KAIST core) before applying to VVER ones. 

3. Finally, we developed an enhanced version of the Linear Surface (LS) method 

already present in APOLLO2 or APOLLO3® codes [15]. The goal of the new 

method is to allow using coarser computational meshes and therefore improve the 

computational time. In this note, we describe some results that are nevertheless 

limited to transport (i.e., they do not include any acceleration). Therefore, the 

method is not mature for industrial applications. The upgrading of the acceleration 
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is ongoing, and we hope we will be able to propose it as soon as possible. The 

work done to develop this item has been synthetized in the journal paper [16]. 

In Appendix A we describe the description of a Python library that permits the use of 

ALAMOS tools to describe coherently the full set of geometries needed for lattice 

calculations in a full-core study, as the one done here for the KAIST-like example in 

Paragraph 5. In our study, in fact, we “mixed” the native APOLLO3® geometries with the 

external ones of ALAMOS, but in future industrial applications the use of full external tool for 

geometry preparation may be investigated. The work presented here is a first step for this 

analysis.  

In Appendix B we relegate the set of figures that describe the spatial error distribution in 

the different axial layers of the 3D calculation presented in Section 2.  
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2 Basic 3D transport methods and computational issues 

treated in this deliverable 

In Task 4.4 we developed new methods for advanced treatment of some specific 

modeling problems in reactor physics. The numerical technique used for these 

investigations concerns the method of characteristics (MOC) implemented inside the TDT 

solver of the APOLLO3® code. In this paragraph, we detail the main improvements 

introduced in this solver inside the CAMIVVER project. 

The traditional implementation of MOC solvers is in 2D calculations, which are routinely 

used in lattice calculations for multi-parameter library production. In CAMIVVER, we 

retrieved a previous version of the code [3],[4] where a 3D MOC was implemented, and we 

extended it to treat depletion problems with a polynomial expansion of cross sections (or, 

equivalently, of nuclide densities). To comply with typical nuclear reactor geometries, which 

are extruded, this polynomial expansion is limited to the axial direction. The main application 

case of this method concerns the axial reflector, where a strong thermal flux peak exists that 

is generally completely neglected in lattice calculations, or roughly modeled with 

approximate mono-dimensional schemes.   

While burnup increases, the spatial flux gradients provoke the appearance of similar 

variations in nuclide densities and therefore of macroscopic cross sections. The typical 

approximation of all transport codes available nowadays to the best of our knowledge, is to 

approximate the cross section spatial variation as a step-wise constant (i.e., a different 

constant value in each volume of the domain both radially and axially). This of course 

undermines the approach of considering higher order expansion for the neutron flux, since 

one can expect that (for sufficiently high burnups) the same spatial variation of fluxes 

characterizes macroscopic cross sections. Using higher order approximations for the former 

(flux) is ineffective without extending it to the latter (cross-sections and concentrations, at 

least for full depleted systems). The extension of the MOC 3D flux expansion to the cross 

sections has been done in  [5] and we resume here the approach and results. We refer to 

this last reference for more details. An independent application of this approach to the future 

experimental high flux CEA reactor “Jules Horowitz” can be found in [6] , from which we 

have largely taken the theoretical presentation of the 3D MOC.   

 

2.1 The polynomial expansion 

For a given energy group, we can consider the angular moments �⃗⃗� (𝑟 ) =

{𝛷𝑛(𝑟 ), 𝑛 = 1,𝑁𝑚}, related to an expansion of order 𝐾 of the angular flux 𝜓(𝑟 , �⃗� ) in terms of 

real spherical harmonics 𝐴 (�⃗� ) [7], where 𝑁𝑚 = (𝐾 + 1)
2 and the effective macroscopic cross 

section 𝛴𝜌(𝑟 ) written here for an arbitrary  reaction 𝜌 . Note that the previous spatial functions 

can be written with the help of a polynomial expansion over a base of order 𝑁𝑝 so that at the 

interior of each computational region 𝑟, we can write these functions as: 

 

𝛷𝑛(𝑟 ) = �⃗� (𝑟 ) ∙ �⃗⃗� 𝑛,𝑟            and            𝛴𝜌(𝑟 ) = �⃗� (𝑟 ) ∙ 𝛴 𝜌,𝑟 , 

2.1 

�⃗� (𝑟 ) being the polynomial base given by  
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�⃗� (𝑟 ) = {(�̃�𝑟)
𝑝, 𝑝 = 0,𝑁𝑝} ,            �̃�𝑟 =

𝑧𝑟 − 𝑧�̅�
∆𝑧𝑟/2

 . 

2.2 

In the previous formulas, 𝑧𝑟, 𝑧�̅� et ∆𝑧𝑟 are, respectively, the axial coordinate, the value at 

the mid height of the “r-th” computational region and the axial width of this same region. 

 

2.2  Free transport iterations  

Take into consideration a chord of the basic tracking set. Here a chord is the intersection 

of a characteristics line with the boundaries identifying a computational region. Let define 𝑙 

as being the length and supposed to be parallel to �⃗�  , where 𝑟 − and 𝑟 + = 𝑟 − + 𝑙�⃗�  are the 

entering and exiting positions, respectively. The exiting angular flux, 𝜓+ is given by the 

following relation: 

 

𝜓+ = 𝒆−𝝉(𝒍)𝜓− + �⃗� 2𝑁𝑝(𝑟 −) ∙ �⃗�  , 

2.3 

where the index « 2𝑁𝑝 » means that the vector T contains supplementary terms with 

respect to Eq 2.2  until the order 2𝑁𝑝, and 

                                                                                                         

�⃗� = {𝑇𝑘, 𝑘 = 0, 2𝑁𝑝} ,            𝑇𝑘 = ∑(
𝑝

𝑘
)

2𝑁𝑝

𝑝=𝑘

(
2𝜇

𝛥𝑧𝑟
)
𝑝−𝑘

𝑞𝑟,𝑝(�⃗� ) 𝐸𝑝−𝑘 , 

2.4 

𝜇 being the polar cosine of the direction �⃗�  and (𝑝
𝑘
) is the binomial coefficient. Eq. 2.3 is 

obtained from the integral formulation of the transport equation for the stationary one group 

situation. In Eq. 2.4 𝜏(𝑠) is the optical length between 𝑟 −and 𝑟 − + 𝑠�⃗�  along the chord, the 

“transmission coefficient” 𝑇𝑘 is expression of polynomial coefficient of order 𝑝, 𝑞𝑟,𝑝(�⃗� ), 

(which appears in the polynomial expansion of the emission density analogous to those of 

Eq. 2.2  for the one group  angular for the angular emission density), and the integral term 

𝐸𝑝−𝑘 = ∫ 𝑑𝑧 𝑧𝑝−𝑘𝑒−(𝜏−𝑧)
𝜏

0
. Inserting the macroscopic cross section polynomial expansions 
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into the expression of the optical length (which is the integral of the macroscopic cross 

section along the chord) we can write: 

 

𝜏(𝑠) = ∑ 𝛬𝑗
𝑁𝑝
𝑗=0

𝑠𝑗+1,            𝛬𝑗 = ∑ 𝜆𝑖𝑗 ,            
𝑁𝑝−𝑗

𝑖=0
𝜆𝑖𝑗 = 𝑃𝑖(𝑟 

−)𝛴𝑇,𝑟,𝑖+𝑗 (
2𝜇

𝛥𝑧𝑟
)
𝑗 1

𝑗+1
(𝑖+𝑗
𝑖
), 

2.5 

where 𝛴𝑇,𝑟,𝑖+𝑗 is the coefficient of the polynomial order 𝑖 + 𝑗, for region 𝑟, of the total 

macroscopic cross section  

As for the coefficients of the emission density, their expression includes the polynomial 

coefficients of the flux angular fluxes and of the cross sections (of each group) (Eq. 2.1): 

                                       

 𝑞𝑟,𝑝(�⃗� ) = 𝑞𝑟,𝑝
𝑔
(�⃗� ) = ∑𝐴𝑛(�⃗� )

𝑁𝑚

𝑛=1

∑ ∑ 𝛴𝑆,𝑛,𝑟,𝑗
𝑔′→𝑔

𝑗+𝑘=𝑝𝑔′

𝛷𝑛,𝑟,𝑘
𝑔′

+
1

𝑘eff
∑𝜒𝑖

𝑔

𝑖

∑ ∑ 𝜈𝛴𝐹,𝑖,𝑟,𝑗
𝑔′

𝑗+𝑘=𝑝𝑔′

𝛷1,𝑟,𝑘
𝑔′
 . 

2.6 

∑ ,∑  and ∑  𝑗+𝑘=𝑝𝑖𝑔′ express, respectively, the summation over the energy groups, over 

the number of fissile isotopes and over the polynomial components of order 𝑗  of the cross 

sections and 𝑘 of the flux, with the constraint that their sum has to be equal to 𝑝. 𝛴𝑆,𝑛,𝑟,𝑗
𝑔′→𝑔

 is 

the scattering cross section coefficient of spatial order 𝑗 of 𝛴𝑆,𝑛
𝑔′→𝑔

(𝑟 ), which is at its turn the 

coefficient corresponding to the 𝑛-th angular moment of the transfer macroscopic cross 

section from group 𝑔′ to group 𝑔 (classically developed in Legendre polynomials). In the 

same way, 𝜈𝛴𝐹,𝑖,𝑟,𝑗
𝑔′

 is the spatial coefficient in the development of the number of neutrons 

produced by fission for the isotope 𝑖 per unit volume produced by neutrons with incident 

group 𝑔′. 𝜒𝑖
𝑔
 is the spectrum emitted in group g by the fission of isotope 𝑖 and 𝑘eff is the 

effective multiplication factor. 

Finally, the term 𝐸𝑝−𝑘 of Eq. 2.4 is given by the relation: 

 

𝐸𝑝−𝑘 = ∫ 𝑑𝑠 𝑠
𝑝−𝑘

𝑙

0

𝑒𝜏(𝑠)−𝜏(𝑙) , 

2.7 

which, due to the polynomial expression of the optical path, cannot be integrated in closed 

form. The calculation of this integral is therefore done by a quadrature Gauss formula of an 

adaptive type, which uses for each chord and group a suitable order, that is determined 

computing a suite of integrals with an increasing order until the numerical value converges 

(the error is estimated by the difference between two successive values). As an option the 

user can use the same order to compute all values for all regions and energy groups. 

 

2.3  Balance equation 

In order to update, for each region 𝑟 and each energy group, the spatial coefficients of 

the angular moment of the flux are used  
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�⃗⃗⃗� 𝑟 = {𝛷𝑛,𝑟,𝑝 , 𝑛 = 1,𝑁𝑚 , 𝑝 = 0,𝑁𝑝 }.  

2.8 

 These coefficients are retrieved solving the balance equation. With this equation we are 

able to close the system (with the transmission equation 2.3). From now on we will use the 

bold characters for vectors and matrices that will contain all spatial and angular components. 

Moreover, we will adopt the traditional numbering of angular moments with the anisotropy 

order 𝑙 and the corresponding index 𝑚 to enumerate the harmonics related to the same 

anisotropy order. The vector 𝐴 (�⃗� ) of the real spherical harmonics will then be denoted as:  

 

𝐴 (�⃗� ) = {{𝐴𝑙
𝑚(�⃗� ),𝑚 = −𝑙, 𝑙}, 𝑙 = 0, 𝐾} 

2.9 

and this numbering is also adopted for the vector �⃗⃗� (𝑟 ) of angular moments. Starting from 

the stationary integro-differential one group transport equation and projecting on the angular 

and spatial base defined by the product of spherical harmonics and spatial monomials, it is 

possible to obtain the following system of equations for each one of the 2𝐾 + 1 admissible 

values of the index: 

 

𝜞𝑟
𝑚�⃗⃗⃗� 𝑟

𝑚 = �⃗⃗� 𝑟
𝑚 − �⃗⃗� 𝑟

𝑚 . 

2.10 

The vector terms are equal to: 

 

�⃗⃗⃗� 𝑟
𝑚 = {�⃗⃗� 𝑙,𝑟

𝑚 , 𝑙 = |𝑚|, 𝐾}           

�⃗⃗� 𝑟
𝑚 = {(𝓩𝑟 �⃗⃗� 𝑟)𝑙

𝑚, 𝑙 = |𝑚|, 𝐾} 

�⃗⃗� 𝑟
𝑚 = {𝛥 𝑙,𝑟

𝑚 , 𝑙 = |𝑚|, 𝐾}           

2.11 

and the matrix 𝜞𝑟
𝑚 will be described in the following, as well as the components of the 

vector (𝓩𝑟 �⃗⃗� 𝑟)𝑙
𝑚 and 𝛥 𝑙,𝑟

𝑚 . Since each of these last elements contains 𝑁𝑝 + 1 components 

one, the vectors of Eq. 2.11 will be formed by (𝐾 − |𝑚| + 1)(𝑁𝑝 + 1) elements. This implies 

that the dimensions of the system 2.10 vary in function of 𝑚. 

 

2.3.1 Description of the term (𝒵𝑟𝑞 𝑟)𝑙
𝑚 

In this product, �⃗⃗� 𝑟 is the vector of 𝑁𝑚(2𝑁𝑝 + 1) spatio-angular components of the 

emission density, such that 
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�⃗⃗� 𝑟 = {{∮
𝑑�⃗� 

4𝜋
𝐴𝑛(�⃗� )𝑞𝑟,𝑝(�⃗� ), 𝑝 = 0,2𝑁𝑝} , 𝑛 = 1, 𝑁𝑚}

= {{{∮
𝑑�⃗� 

4𝜋
𝐴𝑙
𝑚(�⃗� )𝑞𝑟,𝑝(�⃗� ), 𝑝 = 0,2𝑁𝑝} ,𝑚 = −𝑙, 𝑙} , 𝑙 = 0, 𝐾} , 

2.12 

and 𝓩𝑟 is the following matrix: 

 

𝓩𝑟 = ∮
𝑑�⃗� 

4𝜋
 �⃗⃗� 𝑟(�⃗� ) ⊗ �⃗⃗� 𝑟

2𝑁𝑝(�⃗� ) . 

2.13 

The vector �⃗⃗� 𝑟(�⃗� ) and �⃗⃗� 𝑟
2𝑁𝑝(�⃗� ) are defined as 

 

�⃗⃗� 𝑟(�⃗� ) = {𝐴𝑛(�⃗� )ℙ⃗⃗ 𝑟(�⃗� ), 𝑛 = 1,𝑁𝑚}   

�⃗⃗� 𝑟
2𝑁𝑝(�⃗� ) = {𝐴𝑛(�⃗� )ℙ⃗⃗ 𝑟

2𝑁𝑝(�⃗� ), 𝑛 = 1,𝑁𝑚} , 

2.14 

where, ℙ⃗⃗ 𝑟(�⃗� ) and ℙ⃗⃗ 𝑟
2𝑁𝑝(�⃗� ) are the vectors described by Eq. 2.2, and their product 

ℙ⃗⃗ 𝑟(�⃗� ) ⊗ ℙ⃗⃗ 𝑟
2𝑁𝑝(�⃗� ), gives a numerical version of the mass matrix 𝒫2𝑁𝑝 =

1

𝑉𝑟
∫ 𝑑𝑟 
𝑟

�⃗� (𝑟 ) ⊗

�⃗� 2𝑁𝑝(𝑟 ), 𝑉𝑟 being the volume of the region 𝑟. The use of the numerical version of this operator 

instead of the analytical one is required for the stability of the iterations, as explained in [4]. 

 

2.3.2 Description of the term �⃗⃗� 𝑙,𝑟
𝑚  

This second term is obtained applying the projection ∮
𝑑�⃗⃗� 

4𝜋
𝐴𝑙
𝑚(�⃗� ) ∗ to the following 

streaming term: 

 

𝛥𝒥 𝑟(�⃗� ) =
𝛥⊥(�⃗� )

𝑉𝑟
∑[�⃗� (𝑟 𝑡

+)𝜓𝑡
+(�⃗� ) − �⃗� (𝑟 𝑡

−)𝜓𝑡
−(�⃗� )]

𝑡∥�⃗⃗� 

𝑡∈𝑟

 , 

2.15 

where 𝛥⊥(�⃗� ) is the surface of the transversal area associated to the characteristics lines 

parallels to �⃗�  and the sum is done over all chords parallel to �⃗�  and intersecting 𝑟. The term 

𝛥𝒥 𝑟(�⃗� ) is cumulated during the transport sweep of trajectories applying the transmission 

Equation 2.3. 
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2.3.3 Description of 𝜞𝑟
𝑚 

𝜞𝑟
𝑚 is a square matrix that can be defined by block. To this effect, it is necessary to 

introduce the two following matrices: 

𝒢𝑟 = {𝒢𝑟,𝑝𝑖 , 𝑝 = 0,𝑁𝑝, 𝑖 = 0, 𝑁𝑝} ,            𝒢𝑟,𝑝𝑖 =∑𝛴𝑇,𝑟,𝑘

𝑁𝑝

𝑘=0

𝒫(𝑝+𝑘)𝑖 

ℋ𝑟 = {ℋ𝑟,𝑝𝑖 , 𝑝 = 0,𝑁𝑝, 𝑖 = 0, 𝑁𝑝} ,          ℋ𝑟,𝑝𝑖 = −
2𝑝

𝛥𝑧𝑟
𝒫(𝑝−1)𝑖 ,      

2.16 

where 𝒫 = (𝒫2𝑁𝑝)𝑇. Finally, if we define 𝑏𝑅 and 𝑏𝐶 as being the indices of the bloc of lines 

and columns respectively, we can then define each of the (𝐾 − |𝑚| + 1)2 blocs of 𝜞𝑟
𝑚 as 

 

(𝜞𝑟
𝑚)𝑏𝑅𝑏𝐶 =

{
 

 
  𝒢𝑟                    𝑏𝑅 = 𝑏𝐶

  𝛼|𝑚|+𝑏𝑅
𝑚 ℋ𝑟            𝑏𝑅 = 𝑏𝐶 − 1

𝛽|𝑚|+𝑏𝐶−1
𝑚 ℋ𝑟          𝑏𝑅 = 𝑏𝐶 + 1

      0                     otherwise

  , 

2.17 

where 𝛼 and 𝛽 are given by: 

 𝛼𝑙+1
𝑚 =

√(𝑙 + 𝑚 + 1)(𝑙 − 𝑚 + 1)

2𝑙 + 1
            and            𝛽𝑙−1

𝑚 = {
√(𝑙 + 𝑚)(𝑙 − 𝑚)

2𝑙 + 1
          |𝑚| ≤ 𝑙 − 1

               0                          |𝑚| > 𝑙 − 1

  . 

2.18 

  

2.4 Acceleration of free iterations 

In the TDT-MOC solver of APOLLO2 and APOLLO3® the slow convergence of the free 

transport iterations (both mono energetic and fission) is accelerated with the DPN  [9] 

method, which has been recently adapted to 3D extruded geometries [8] and to the higher 

order flux and cross section descriptions [4],[5]. In particular, the extension to the higher 

order cross section was developed during the CAMIVVER project. The principle of this 

approach is to solve a problem for the error of the estimated solution at a given iteration but 

with simplified hypotheses (lower anisotropy order and lower spatio-angular flux 

development) so as to deal with a faster problem. The solution of this problem is then used 

to correct the last MOC iteration flux, both at the internal level and to the external fission one 

[5], thus speeding up the global convergence of the iterative algorithm. To define this low 

order operator, we mimic the transport approach and define the two following transport and 

balance equations in terms of low order polynomial expansion coefficients of fluxes and 

cross sections:  

 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛            �⃗⃗� + = 𝓣∗�⃗⃗� − + 𝓔∗�⃗⃗� 𝑉
ext 
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                                         𝐵𝑎𝑙𝑎𝑛𝑐𝑒            �⃗⃗⃗� 𝑉,𝑟 = �̃�𝒓�⃗⃗� 𝑉,𝑟
ext + ∑ 𝑰𝛽

𝛽∈𝜕𝑟

�⃗⃗� 𝛽
−        ∀𝑟 . 

2.19 

The first relation is a system implying the set of currents (that here are the polynomial 

components of surface fluxes) over all interfaces between regions: the exiting vector is 

expressed in function of the entering one and of the external emission densities including 

transfer from other groups and fission. Once the “currents” are found, their values are 

substituted back into Eq. 2.20 and this allows to retrieve fluxes and so to accelerate 

convergence. 

A more detailed explication as well as a description of the set of coefficients (𝓣∗, 𝓔∗, �̃�𝒓 

et 𝑰𝛽), is given in [5]Erreur ! Source du renvoi introuvable., which constitutes the main 

CAMIVVER contribution to the development of the 3D polynomial solver. 

 

2.5 Depletion coupling 

The main goal pursued in the 3D lattice calculations of APOLLO3® was to perform 

reference calculations for depletion. Since the main APOLLO3® functionalities suppose a 

representation of cross sections which is step-wise constant, we defined a coupling strategy 

with the depletion library of the MENDEL code [14] and the self-shielding component based 

on the possibility of interpolating two different fluxes that are supposed to be coherent with 

a polynomial and a step-wise constant flux (and cross section) representation. We suppose 

therefore that the APOLLO3® user has produced two such geometrical and material 

representations and it is up to the solver itself to interpolate the « step-wise » coherent 

representation at entry onto the polynomial flux, and then use the polynomial flux solution at 

exit to make a projection  onto the step-wise mesh. In this framework, the entering 

interpolation phase has to include the treatment of the cross section. An important remark 

is that both depletion and self-shielding phases are based on “intensive” quantities. This 

means that the self-shielding and the depletion operator do not need to compute the flux 

integral volume but treat simply punctual quantities. This permits us to define the mesh for 

self-shielding and depletion as a “Gaussian” mesh, with computational points located in the 

privileged points of the well-known Gaussian quadrature formula (see [5] for details). This 

permits us to interpolate in an optimal way the entering flux onto the polynomial mesh for 

MOC calculation. Typically, we use a Gauss-Legendre formula of order 5 for the depletion 

and self-shielding calculations. Calling 𝛷𝑖 the generic spatial moment in region 𝑖 of the flux 

mesh, the flux over the self-shielding/depletion mesh is given by: 

𝛷𝑖 = �⃗� (�̃� = 𝑥𝑖) ∙ �⃗⃗� 𝑟 = 𝛷𝑟,0 + 𝑥𝑖𝛷𝑟,1 + 𝑥𝑖
2𝛷𝑟,2 +⋯+ 𝑥𝑖

𝑁𝑝𝛷𝑟,𝑁𝑝  , 

2.20 

where 𝑥𝑖 is the abscissa of the Gauss-Legendre mesh to which 𝑖 belongs and �⃗⃗� 𝑟 is the 

vector moments to which 𝑟 belongs, in the flux mesh to which 𝑖 is associated. The flux 

computed on the Gaussian mesh will then be transferred to the depletion (resp. self-

shielding) operators to update nuclide concentrations (resp. micro cross sections). 

In the same manner at the beginning of the flux calculation, it is necessary to obtain the 

spatial component of the cross section, starting from the constant and self-shielded values 
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stored at the Gaussian points of the mesh. The polynomial coefficients 𝛴 𝑟 for an arbitrary 

reaction in region 𝑟 are obtained by preserving the moments 𝛴 𝑟
′ = {𝛴𝑟,𝑝

′ , 𝑝 = 0,𝑁𝑝} starting 

from the NG stored in the mesh {𝛴𝑖 , 𝑖 = 1, 𝑁𝐺}, as follows : 

 

𝛴𝑟,𝑝
′ =

1

𝑉𝑟
∫𝑑𝑟 
𝑟

𝑃𝑝(𝑟 )𝛴(𝑟 ) =
1

2
∫ 𝑑�̃�
1

−1

(�̃�)𝑝𝛴(�̃�) =
1

2
∑𝑤𝑖(𝑥𝑖)

𝑝𝛴𝑖

5

𝑖=1

 

 

𝛴 𝑟 = 𝒫Sq𝛴 𝑟
′  , 

2.21 

where 𝑤𝑖 is the Gauss-Legendre weight associated to the i-th abscissa and 𝒫Sq is the 

square matrix associated to the minor of order 𝑁𝑝 + 1 of 𝒫. Since the evaluation of the 

moments needs to integrate the polynomials until the order 2𝑁𝑝 and that a Gauss quadrature 

of order 𝑚 integrates exactly polynomials up to order 2𝑚 − 1, it follows that 2𝑚 − 1 ≥

2𝑁𝑝 ⟹  𝑚 > 𝑁𝑝. Hence, adopting for our calculations a quadrature of order 5, it is possible 

to expand exactly the effective cross sections until order 2. In Fig. 2.1, it is described 

schematically the interpolation and projection way between cross section (at enter) and 

fluxes (at exit) of each calculation along depletion. 

 

 

Figure 2.1: Coupling of cross sections and nuclide concentrations along depletion (from [5]). 

 

2.5.1 3D case description and benchmarking 

In the following Figs 2.2 and 2.3, we describe the radial and vertical layouts of the 

computational case we considered in our study. The case is a typical 17 by 17 UOX 3D 

assembly including the axial reflector. This last is modeled here by smearing its 

homogenously structure material into the moderator as it is typical done in Monte Carlo 

calculations for industrial benchmarks. The detailed geometrical description of the case can 

be found in [5]. To perform our reference Monte Carlo calculations, we used TRIPOLI-4® 

[22] and the Triage function of APOLLO3® to translate all APOLLO3® data into TRIPOLI-4® 

ones (e.g., geometry, material composition and temperatures, reaction rates to be scored). 

In the following Tables 2.1 and 2.2, we can find the main computational options adopted for 

the TRIPOLI-4® and APOLLO3® calculations. 
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Figure 2.2: X-Y layout of the 3D assembly calculation. 

 

Figure 2.3: Axial (i.e., along Z) layout of the 3D assembly calculation. 

To interpret the results (that we mostly relegated in Appendix B) it is important to note 

that the material meshes along the z axis are in number of 9 (see Fig. 2.3). The first two 

meshes correspond to the axial reflector. The third one is for the first active region at the 

interface with the reflector. The fourth one describes the first grid zone. And then we find 

alternatively active zones followed by grid zones until the last ninth layer, which ends on the 

axial plane of symmetry. 

These calculations have been carried out using the AP3-2.3.r18530 revision of the 

APOLLO3® code and the 4.11.1 version of the Monte Carlo TRIPOLI-4® code. 

Table 2.1 - Main calculation options adopted with the polynomial 3D MOC solver of APOLLO3®. 

  AP3-XPOL 

Energy mesh SHEM-281 

Anisotropy P3 

SSH methods 
Fine Structure (Pij exact) + Livolant-Jeanpierre for 

mixtures 

Upscattering No 

Nuclear Data JEFF3.1.1 

Polar angles (0, 𝜋) 4 
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Azimuthal angles (0,
𝜋

2
) 24 

Order of the spatial polynomial 

development 
2 

Table 2.2 - Main calculation options adopted with TRIPOLI-4®. 

  TRIPOLI-4® 

Number 

batches 
150000 (+200 discarded) 

Batches size 20000 

Doppler 

broadening 

method 

SVT with  

𝐸𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 4.95 𝑒𝑉 

Nuclear Data JEFF 3.1.1 

TABPROB Yes 

 

2.5.2 Context for a correct comparison between Monte-Carlo and deterministic 

calculation along depletion 

In order to compare correctly Monte-Carlo and deterministic calculations along depletion 

one must take into consideration that Monte-Carlo methods adopt a step-wise approximation 

for cross sections. This means that the Gaussian mesh adopted for the deterministic 

calculation to exchange with depletion and self-shielding is certainly too coarse to correctly 

capture the strong cross section gradients that appear especially at the interface with the 

axial reflector at high burnups [5]. We need therefore adding some supplementary axial 

layers to the Monte-Carlo simulation in order to be more accurate and have a fair comparison 

with APOLLO3®. We called this the “Step-Equivalent” Mesh (SEM), as it corresponds to the 

mesh one needs to adopt (even in deterministic calculations) to reproduce more accurately 

the cross section evolution along depletion with a step-wise axial approximation. 

Derivation of an optimal “step-equivalent” mesh 

In Fig. 2.4, we sketched the situation by plotting the total cross section along the z axis at 

a certain location on the 2D plane for a given energy group. This plot uses the polynomial 

functions used for the flux calculation1. A step-wise approximation of the cross section can 

also be seen. The corresponding SEM mesh was derived by employing a Python script 

(developed during the CAMIVVER project) based on the following algorithm.  

To correctly “follow” the spatial behavior of the polynomial total cross section (we 

considered the Σ𝑡 gradients to be representative for the gradients of the other cross sections 

as well) in each 2D region and each energy group, we approximate it with a step-wise 

approximation that we require to match the reference at each interval within a given 

tolerance ΔΣ. The resulting SEM meshes (one for each 2D region and energy group) are 

 

 

1 The coefficients of the polynomial expansion of the total cross sections are printed by APOLLO3® on 

text files and read with a Python script. 
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then merged to obtain a single mesh whose layers must be larger than a certain tolerance 

𝛿𝑧𝑚𝑖𝑛 (i.e., while merging two SEM meshes, the algorithm checks that, the z-layer it is trying 

to insert, is sufficiently far from the neighboring ones, otherwise it rejects it and moves to the 

next). The final SEM mesh such derived is guaranteed to conserve the zero-th order moment 

of the reference polynomial total cross section but not its higher-order moments. Hence, a 

posteriori we verify that these moments are sufficiently accurate (i.e., within a tolerance Δ𝜁𝑝). 

Otherwise, we reduce the tolerances ΔΣ and 𝛿𝑧𝑚𝑖𝑛 and restart the script. 

The SEM mesh shown in Fig. 2.4 has 79 layers along z and it is the result of several 

iterations performed with the Python script to optimize its outcome, not only in terms of 

precision in the approximation of the higher order moments of the cross section, but also in 

terms of number of layers. In fact, the higher the number of z-layers in the z-mesh, the more 

expensive from the computational and memory points of view are the corresponding 

TRIPOLI-4® calculations. Hence, it was necessary to tune the tolerances ΔΣ and 𝛿𝑧𝑚𝑖𝑛 on 

each polynomial layer (i.e., the 3rd, the 5th, the 7th, and the 9th) independently, as reported in 

Table 2.3. 

Table 2.3 – Parameters adopted in the Python script to derive the SEM mesh in Figure 2.4. 

Parameter Value 

ΔΣ (%) 

(values in the [3rd, 5th, 7th, 9th] layer) 
[3.8, 3.8, 3.5, 2.5] 

𝛿𝑧𝑚𝑖𝑛 (cm) 

(values in the [3rd, 5th, 7th, 9th] layer) 

[0.38, 1.5, 2.0, 3.5] 

 

Δ𝜁1, Δ𝜁2 (%) [0.1, 0.1] 

 

Once this SEM mesh is set up, we can use the APOLLO3® environment to produce a 

calculation where the previously described Gaussian mesh is substituted with this new SEM 

mesh. These new calculations are then used to produce the data (isotopic concentrations, 

etc.) suitable for the TRIPOLI-4® calculations that are to be compared with the “polynomial” 

calculations done with the Gaussian meshes. In principle, using “optimized” step-wise 

calculations instead of Gaussian ones is less precise. And in fact, we found that the two 

deterministic calculations (the Gaussian and the Step-optimized one) give different results 

starting from 10MWd/t and more strongly at the end of the cycle as the following Fig. 2.6 

shows. This probably means that we need to squeeze our tolerances to allow them sticking. 

But for lack of time we did not pursue this in this work. 
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Figure 2.4: Example of the mesh generator outcome: each vertical line corresponds to an axial layer 

of the “step-equivalent” mesh. 

 

2.5.3 Comparison of TRIPOLI-4® vs APOLLO-3® results 

In Fig. 2.5 we give the error between the reference deterministic calculation done with the 

Gaussian mesh and the SEM computed by algorithm described in the previous sub-section. 

 

Figure 2.5: Reactivity swing along depletion computed with the reference deterministic method with 

Gaussian mesh, and the relative error with respect to the computed SEM derived with the strategy of 

sub-section 2.4.2. 

The errors undergone with the SEM are quite low and we are well poised to use the SEM 

for further comparisons with TRIPOLI-4®. The following Fig. 2.6 depicts the obtained 

reactivity errors with respect to Monte Carlo calculations that have been produced with the 

SEM and with the concentrations extracted from the deterministic calculation at each 

depletion step. This figure shows that the deterministic reactivity is systematically 
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underestimated and that, apart from a maximum local error of about 230 pcm around 

200MWd/t, there is drift in the error at the end of the cycle, conducting the maximum error 

to 340 pcm. As showed in [5], the gradients of the cross sections at the end of the cycle are 

very high. We can therefore suppose that our computational mesh is not fine enough (with 

an order of polynomial development of order 2) to give a correct result at the end of the 

cycle. We will address in next future further studies to improve this precision. 

 

Figure 2.6: Reactivity swing along depletion computed with the reference deterministic method with 

Gaussian mesh, and the relative error with respect to the computed with TRIPOLI-4® calculations 

obtained with the concentration extracted onto the SEM obtained with the strategy of sub-section 

2.4.2. 

Before going on, we show in Figs. 2.7 and 2.8 the radially integrated reaction rates at 0 

MWd/t, along each layer computed with the referential deterministic Gaussian method and 

its discrepancies with respect to the SEM calculation. It is apparent that our SEM is not 

completely converged from the spatial viewpoint and that a different converged mesh should 

probably reduce the following errors. 

In Fig. 2.9, we plotted the radially integrated reaction rates at 0 MWd/t, along each layer. 

If results are good for most internal layers, a problem appears at the interface with the axial 

reflector where there is a relative maximal errors of 3%. This tendency is confirmed also in 

Appendix B with the analysis of pin-by-pin reaction rates errors. It is worth noting that in Ref.  

[5] a similar analysis was done but with lower errors. In that reference, a different mesh and 

different options were used in TRIPOLI-4® calculations, but the choice here should be a 

better one, and also an older version of APOLLO3® was used there. We need therefore 

more work to correctly interpret these discrepancies. Having said that, we believe that the 

present work is representative and interesting. It is in fact worth noting that, at the best of 

our knowledge, there is not any benchmark result for depletion calculation in literature. Even 
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customary Monte-Carlo calculations do not rigorously test the spatial convergence of the 

step-wise cross section approximation.  

 

  

           

Figure 2.7: Radially integrated reaction rates (fission on the left, capture on the right) and 

discrepancies at 0 MWd/t between the reference deterministic calculation (with the Gaussian mesh) 

and the SEM one. 

 

In Fig. 2.10, we plot a similar content of Fig. 2.9 but at the end of the cycle at 60 GWd/t. 

Here, errors are a bit lower than at 0 MWd/t but of similar order. In Appendix B, the plot of 

the pin-by-pin reaction rates confirms this behavior. 

As a general comment we can say that our higher order MOC method shows a good 

behavior during depletion, even if we still have some local errors (especially in the axial 

reflector) that have to be understood. Part of these errors certainly come from the self-

shielding technique we have chosen. Another issue seems to be linked to the strong cross 

sections gradients present at the end of the cycle.  

In conclusion of this section, we can say that during the CAMIVVER project we have 

adapted the higher 3D MOC scheme to take into account the spatial variation of nuclide 

concentrations and cross sections during depletion. We have also established a framework 

to undergo detailed comparisons for Monte-Carlo validation. Preliminary calculation have 

been done and encouraging results have been obtained. More work needs to be done to 

fully achieve this validation phases.  
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Figure 2.8: Radially integrated reaction rates (fission on the left, capture on the right) at 60 GWd/t 

between the reference deterministic calculation (with the Gaussian mesh) and the SEM one. 

           

Figure 2.9: Radially integrated reaction rates at 0 MWd/t (fission on the left, capture on the right) and 

their respective relative errors with respect to Monte Carlo calculations. 



CAMIVVER – 945081 – D4.6 - issued on 31/08/2023 

Page 22/73 

           

Figure 2.10: Radially integrated reaction rates at 60 GWd/t (fission on the left, capture on the right) 

and their respective relative errors with respect to Monte Carlo calculations. 
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3 Advanced reflector modeling with APOLLO3®  

In this section, we discuss the work done in Task 4.4 for the improvement of the reflector 

modeling. To test our approaches, we used a modified version of the KAIST benchmark 

[12], that was defined specifically in task 4.4 in[13]. The main difference is in a curved heavy 

reflector instead of the original water Cartesian one, and introduced in it a set of water holes 

as well as the bypass, the barrel and the downcomer. This has the evident goal of being 

more in touch with the industrial context, being this reflector design conceptually similar to 

the one found in the EPR nuclear reactor or the SMR concepts under development. The 

detailed description of the reflector design adopted can be found in [13]. In Figs. 3.1 and Fig 

3.2 we describe the general layout. The latter is simply a recall of the original benchmark 

[12] for what concerns the assembly location. In our calculations, the modeling was done by 

using native geometry capabilities of APOLLO3® to describe the assembly geometries, and 

the ALAMOS code [11]  to model the reflector. In Appendix A, we show how the ALAMOS 

application can also be used to model the entire geometry of this test case. The reason why 

we did not used this last approach is because these capabilities were not available at the 

beginning of the project and they were developed to open the discussion for future industrial 

applications.   

 

 

Figure 3.1: Modified KAIST CORE with heavy reflector generated with native plus ALAMOS 

geometries. 

 

3.1 Geometrical and material description of the study cases 

As depicted in Figs. 3.1 and 3.2 we took into consideration a quite heterogeneous core 

layout, including MOX assemblies. In the original benchmark, it was possible to substitute 

MOX assemblies with Control Rod ones. We did also run these calculations in 2D, but we 

did not fully benchmark them against Monte Carlo calculations. Hence, in this note we only 

present unrodded configurations.  
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Figure 3.2: Assembly layout of KAIST CORE (from reference [12]). 

 

In the following Tables 3.1 and 3.2, we reported the list of geometrical features concerning 

the core and the reflector layout, and in Table 3.3 the reactor operating conditions . 

The pressure vessel is not represented in our calculations (because we are interested in 

analyzing perturbations in terms of 𝑘𝑒𝑓𝑓 and in-core reaction rates on which the explicit 

modeling of the vessel has no impact) and vacuum boundaries conditions are imposed 

outside the downcomer (i.e., at 𝑥 = 𝑥𝑚𝑎𝑥). 

 

Table 3.1: General reactor characteristics. 

Cell pitch 1.26 cm 

Assembly pitch 21,42 cm 

Assemblies number 52  

Core length 171.36 cm 

Reactor length 264.4672 cm 

Water holes number (1/8th) 48  

 

Table 3.2: Heavy reflector specifications. 

 Material inner radius (cm) Thickness (cm) 

baffle stainless steel (SS-304) 85.68 (median) 16.036 

waterhole water (+ bore) 0.7  

bypass water (+ bore) 101.716 0.5 

barrel stainless steel 102.216 5.715 

downcomer water (+ bore) 107.931 24.3026 

outside Void 132.2336 (median)  
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Table 3.3: Reactor operating conditions. 

Reactor power 900 MWth 

Fuel temperature 900 K 

Cladding temperature 630 K 

Moderator temperature 570 K 

Water density 0.7295 g/cm3 

Boron concentration 800 ppm 

Reflector temperature 570 K 

 

The pressure vessel is not represented in our calculation and vacuum boundaries 

conditions are used outside the reflector. 

 

3.2 Computational scheme and establishment of the reference deterministic 

result 

In our deterministic calculations, we used the CEAV512 nuclear data library (based on 

the JEFF3.1.1 evaluation) with the 281 groups energy mesh SHEM [17]. Fuel self-shielding 

is performed by assembly in infinite space for uranium, plutonium, zirconium and gadolinium 

nuclides, using the prescribed option of Fine-Structure self-shielding method typical of 

APOLLO2/3® calculations. 

The treatment of reflector self-shielding is based on a 1D slab with one UOX fuel 

assembly and a reflector slice for uranium, chrome, iron, nickel and manganese nuclides. In 

Fig. 3.3, the initial slab contains one slice of fuel assembly, one slice of stainless steel (2.52 

cm with 7 meshes) and one slice of water (19 cm with 16 meshes). A more accurate slab 

was adopted to improve the reflector self-shielding model: alternating water and stainless 

steel according to the real geometry up to the downcomer (46.6 cm with 81 meshes). The 

last part of Fig. 3.3 describes the geometrical models for the self-shielding. 

Self-shielding calculation uses the TDT-PIJ solver, with a transverse integration step of 

0.05 cm and an angular quadrature formula of 24 uniform angle in [0,2π] and the mandatory 

anisotropy of P0 for collision probability methods. 

 

 

 

Initial reflector slab 

 

New reflector slab 

Figure 3.3: Initial and new reflector 1D model used for self-shielding calculations of the Kaist core. 

 

In our calculations, we used an in-development version of the APOLLO3® code (rev xxx) 

as well as ALAMOS-v9.8.0. We compare results obtained in terms of 1 or 2 energy groups 

reaction rates with a pin by pin spatial resolution. 
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The reference TRIPOLI-4® calculation (input file computed through the Triage tool 2) was 

coherently set up to output cell-by-cell mono- and 2-groups total, capture and fission rates. 

We employed version 4.12 of the code and we simulated 200 000 batches with 25 000 

neutrons/batch, on 36 parallel processes, discarding the first 200 batches per process 

before starting scoring. A square root temperature interpolation of nuclear data was adopted, 

as well as the SVT model for the Doppler broadening of elastic scattering. 

As for the TDT-MOC solver, we tested the linear-surface (LS) characteristics method with 

DP1 acceleration (on a mesh with 37 323 regions and 105 076 surfaces) or the step 

characteristic method (SC) with the asymptotic synthetic accelerations DP1 with sector 

refinement (on a mesh with 195556 regions and 378459 surfaces). More details about these 

two options are given in the next paragraph where we discuss the LS-xy scheme. The MOC 

calculations of this paragraph were carried out with 360 discrete angles derived from a 

product quadrature formula constituted by 36 uniform angles in [0, 𝜋] and 5 Bickley-Naylor 

polar angles in [0,
𝜋

2
]. We adopted a transversal integration step of 0.02 cm and a maximum 

order of anisotropy for the scattering kernel equal to 3. 

In the tables the reactivity error is calculated as follows: 
𝑘𝑒𝑓𝑓𝐴𝑃3

𝑘𝑒𝑓𝑓𝑇4

 –  1. The reaction rates 

are energy integrated, pin by pin homogenization is used in the fuel assemblies but only one 

region is considered in the reflector. The TRIPOLI-4® reference solution presents a 𝑘𝑒𝑓𝑓 =

 1.13522, with a statistical uncertainty 𝜎 =  1.3 pcm. 

These calculations have been carried out using the AP3-2.3.r18432 revision of the 

APOLLO3® code, the 4.11.1 version of the Monte Carlo TRIPOLI-4® code and the 9.8 

version of the ALAMOS tool. 

Table 3.4: Reactivity, fission, capture and total reaction rates errors in one and two groups for the 

Kaist calculation in function of the two computational options SC or LS and the initial or new slab for 

reflector self-shielding. 

APOLLO3® 
TDT-MOC-SC TDT-MOC-LS 

initial slab new slab 

Reactivity error (pcm) -300 -220 -221 

Fission rates error (%) 

min -2.71 -0.98 -0.97 

max 5.19 1.66 1.59 

RMS 1.30 0.41 0.40 

Capture rates error (%) 

min -2.08 -0.89 -0.89 

max 3.16 1.65 1.58 

RMS 0.99 0.52 0.53 

reflector 7.37 3.60 3.31 

Total rates error (%) 

min -1.05 -0.29 -0.28 

max 2.99 1.31 1.28 

RMS 0.71 0.25 0.24 

reflector 5.55 4.21 3.67 

 

 

2 APOLLO3® user manual associated to AP3-2.3 version. 
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In Table 3.4, we have a global sketch of the situation in terms of computational error 

between the deterministic and the stochastic calculation. We can remark that the LS scheme 

reduces the reactivity error of 80 pcm and the RMS errors on reaction rate of more than a 

factor 2. The maximum error per cell for LS is 1.6% in the active core part while is 5.1 % for 

the SC. This shows that the larger part of the fissile zones error is simply due to the lack of 

spatial convergence of the computational mesh, despite the fact the mesh adopted for 

calculations with the SC method was significantly more refined. For the reflector the 

maximum error is higher (3.6% for the capture rate in LS, and 7.3% for the SC). Using the 

refined slab model for the reflector SSH does not globally change the situation for the active 

core part, but slightly improves the results for the reflector, at least for the total rates. 

 

Nevertheless, global errors in reflector remain quite important. Generally, people neglect 

the error in the reflector since in the industrial applications we are more interested in the 

response of the fissile zones. But looking at the following spatial distribution of the errors we 

find that the most important ones are located at the interface with the reflector (where the 

power remains generally low). The improvement of the reflector modeling could bring with 

itself a global improvement also of the fissile zone calculation. We believe therefore that the 

reduction of the global error in fissile zones under the level of the percent, could be obtained 

only after an improvement of the self-shielding model of the reflector part. Nevertheless, we 

can say that the errors obtained in this study are largely satisfying for industrial calculation 

and that this model can be used to benchmark depletion calculations, where the Monte-

Carlo calculations are seldom affordable due their too important computational costs. 

 

        

Figure 3.4: Spatial distributions of the fission and absorption reaction rates errors of the KAIST 

CORE against T4 results for the SC calculation. 
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Figure 3.5: Spatial distributions of the fission and absorption reaction rates errors of the KAIST 

CORE against T4 results for the LS calculation with the new reflector slab. 

 

In Figs. 3.4 and 3.5 we plotted the spatial distributions of the fission and capture reaction 

rate errors for, respectively, the SC and the LS calculations against the reference TRIPOLI-

4® calculation (indicated with “T4”). For the LS scheme, the reflector was modeled with the 

new reflector slab. MOC-LS results are significantly better than MOC-SC results and the 

new slab modelling is slightly better than the initial slab. As it was expected the maximal 

errors are located at the interface between the reflector and the core. But, in the case of the 

LS calculation, the erros are quite tiny certainly permitting to use these calculations to 

benchmark depletion calculation of industrial schemes. 

Before moving to the next section, we present some other results concerning the use of 

a SubGroup (SG) model for self-shielding. Since this method is only available with a 383-

groups library, the following results were obtained by switching to a new nuclear data library 

available with JEFF-3.1.1 evaluation (CEAV512 nuclear data library). 

 Of course, it is then difficult to attribute the following improvements simply to the new 

method of self-shielding instead to the refined energy mesh. Unfortunately, it is not possible 

to use the FS method with the 383-groups energy mesh, nor the SG method with the SHEM 

library.  

 

Table 3.5: Direct comparisons in reactivity and reaction rates error between the 383-groups cross 

section library with SG and the FS method with 281 SHEM library. 

 𝚫𝐤/𝐤 

(pcm) 

MAX/MIN 

Fiss (%) 

NRMS 

Fiss (%) 

MAX/MIN 

Capt (%) 

NRMS 

Capt (%) 

MOC-LS FS -220 +1.66/-0.98 0.41 +1.69/-0.83 0.52 

MOC-LS SG -71 +1.35/-0.90 0.41 +1.10/-0.82 0.32 

 

Table 3.5 compares the FS and the SG LS calculations (with refined reflector model). We 

can see that we have an important reduction of the reactivity error and of the maximum error 
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in fission and capture. We have now maximum error only slightly greater than 1%. To 

complete the comparison, Fig. 3.5 shows the error spatial distribution. In Table 3.6 it can be 

found a more detailed information for the errors in reactions rates. Even if these results are 

of higher quality than those obtained with the SHEM MOC scheme, we pursued using this 

latter in the rest of this section, to maintain the computational costs at a reasonable level. In 

fact, we believe that previous results have already an acceptable level of precision and we 

preferred to have the possibility to run faster calculations to cover a larger portion of the 

possible field of investigation.  

 

 

 

Figure 3.5: Spatial distributions of the fission and absorption reaction rates errors of the KAIST CORE 

against T4 results for the LS calculation with the new reflector slab and the SG self-shielding method. 

 

3.2.1 Influence of a multi-zones self-shielding model 

To improve the previous approaches in view of having a geometrical model that can be 

used in the core calculations, we inserted computational zones in the reflector by creating 4 

areas passing through the middle of the water holes: this means that the meshes that we 

inserted inside the reflector do not intersect any water hole. Fig 3.6 gives the computational 

mesh, while Fig. 3.7 represents the distribution of spatial errors. Finally, Table 3.7 gives the 

general situation of the greatest errors in function of the type of the reaction rate and of the 

output energy mesh. 
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Table 3.6: Reactivity, fission, capture and total reaction rates errors in one and two groups for the 

Kaist calculation for the case with SG self-shielding option and the 383-groups cross section library.  

Reference: TRIPOLI-4® 1 group fast group thermal group 

Reactivity error (pcm) -71   

Fission rates error (%) 

min -0.90 -0.69 -1.92 

max 1.35 1.12 1.73 

RMS 0.41 0.29 0.48 

Capture rates error (%) 

min -0.82 -0.63 -1.29 

max 1.10 1.59 1.83 

RMS 0.32 0.28 0.43 

reflector 2.92 2.80 2.94 

Total rates error (%) 

min -0.28 -0.20 -0.79 

max 0.90 0.74 2.24 

RMS 0.24 0.23 0.39 

reflector 2.78 2.76 
2.64 

 

 

 

Figure 3.6: ALAMOS model of exact reflector geometry with layer media separately computed to 

separately compute some adapted self-shielded cross section in each reflector zone. 

 



CAMIVVER – 945081 – D4.6 - issued on 31/08/2023 

Page 31/73 

 

Figure 3.7: Spatial distribution of the pin-by-pin error on one group fission and capture rates with an 

exact reflector and multiple Self-Shielding zones. 

 

Table 3.7: Reactivity, fission, capture and total reaction rates errors in one and two groups, for the 

case of exact reflector geometry with layer media separately computed to represent local shielding 

effects. 

Reference: TRIPOLI-4® 1 group fast group thermal group 

Reactivity error (pcm) -187   

Fission rates error (%) 

Min -1.30 -0.91 -2.73 

Max 3.24 5.07 3.15 

RMS 0.67 0.69 0.75 

Capture rates error (%) 

Min -1.13 -0.64 -1.88 

Max 4.79 6.71 3.33 

RMS 0.62 0.83 0.67 

Reflector -3.47 9.96 -11.48 

Total rates error (%) 

Min -0.63 -0.47 -1.19 

Max 5.56 6.94 3.35 

RMS 0.67 0.63 0.83 

Reflector 7.70 10.06 -12.26 

 

The results of this case are degraded with respect to those of Case 1. This deceiving 

result is probably due to the fact that we removed some compensation of Case 1. Case 7 is 

more faithful to the true geometry, and the computational model also more realistic. It is 

worth noting anyway that, even if we don’t have remarkable improvements in the active 

zone, this case gives a slight improvement in the capture rates of the reflector while total 

ones are worsened. This probably indicates that the previous Case 1 model is subjected to 

important compensation that are probably removed with a more detailed model. We suppose 

therefore that important progress should be done in the shielding model or computational 

options for the reflector. 
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3.3 Evaluating the reflector modelling  

This part analyzes how simplifying the reflector description in terms of geometry and 

composition affects the 𝑘𝑒𝑓𝑓 and fission/capture reaction rates. The goal is to study the 

impact of those simplifying hypothesis usually adopted to model the heavy reflector at core 

level.  

Several configurations are tested, the material balance of the reflector is preserved in any 

case. The APOLLO3® results are compared to the exact cylindrical reflector case with 

explicit water hole description of Fig. 3.1. As before, output reaction rates are given for one 

and two energy groups. Pin-by-pin homogenization is used in the fuel assemblies but only 

one region is considered in the reflector. Only the new slab modelling is used.  

The conversion from a round to a Cartesian reflector studied in following sections is 

accomplished using the specialized functions approximate_circle and sketcher of ALAMOS 

tool3. 

 

3.3.1 Case 1: Homogenized cylindrical reflector 

In this first case, the reflector has the same dimensions and shape as the reference one, 

but no water channels. The water is homogeneously distributed over the entire reflector. 

Fig.3.8 describes the ALAMOS geometrical model for this test case. 

 

 

Figure 3.8: ALAMOS model of the curvilinear reflector model with smeared water holes. 

 

In the following Fig. 3.9 we show the errors on fission and capture rates with respect to 

the reference APOLLO3® calculation. As for error on reactivity, only 17 pcm error is due to 

this approximation as it is shown in Table 3.8 where a general sketch of the situation is 

 

 

3 For more details one can refer to the ALAMOS-9.8 documentation. 
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given. In particular, it is possible to remark that the maximal error on the fission, capture, 

and total rates due to the thermal flux grows up to 4.8%. As Fig. 3.9 shows, the maximum 

error in the fuel is located on the diagonal at the reflector interface. The absence in the 

reflector of water holes in this diagonal could be the reason: smearing the water uniformly 

creates in this region an undue moderation that is not present in the reference model. As a 

matter of fact, we believe this first simple calculation shows that the local-range moderation 

associated to water holes cannot be correctly approximated with smearing it, or alternatively, 

without applying an equivalence that locally prevents the smearing to erase heterogeneities. 

This may become more important in VVER cases where the holes dimensions are more 

variable. This is actually what is done in the industrial computational schemes, like for 

example in France. The errors induced by this procedure are probably negligible on global 

reactivity but can rise very fast to more than 4% on the pins at the interface with reflector. 

Even if these pins are usually not those with the highest power, they are nevertheless those 

that impact more the dose absorbed by the reflector. So that the classical calculation implies 

a strong overestimation.  

 

Figure 3.9: Spatial distribution of the pin-by-pin error on one group fission and capture rates due to 

the approximation of smearing water holes in the reflector. 

Table 3.8: Reactivity, fission, capture and total reaction rates errors in one and two groups due to the 

smearing of the water holes in the reflector. Case 1. 

Reference: APOLLO3® 1 group fast group thermal group 

Reactivity error (pcm) 17   

Fission rates error (%) 

min -0.32 -0.33 -0.32 

max 4.29 2.98 4.83 

RMS 0.28 0.23 0.29 

Capture rates error (%) 

min -0.32 -0.33 -0.32 

max 3.89 3.48 4.87 

RMS 0.28 0.26 0.31 

reflector 14.10 20.21 9.92 

Total rates error (%) 

min -0.33 -0.33 -0.32 

max 2.97 2.87 4.84 

RMS 0.31 0.29 0.38 

reflector 17.90 19.59 2.87 
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3.3.2 Case 2: homogenized Cartesian reflector (1 assembly step) 

The following cases 2, 3, 4 and 5 concern the evaluation of the impact of deforming the 

correct geometry of the reflector with a Cartesian segmentation. This is typically done in 

industrial calculations where the diffusion or SPn core solvers largely rely on Cartesian 

geometries (for which they can perform very fast calculations). In this Case 2, the cylindrical 

reflector is substituted by a Cartesian one, homogenized. The “cartesianization” step is 

equal to 1 assembly side length (i.e., 21.42 cm). Fig. 3.10 shows the computational mesh. 

 

 

Figure 3.10: ALAMOS model of the Cartesian reflector geometry with a step of 1 assembly side 

length. Case 2. 

 

 

Figure 3.11: Spatial distribution of the pin-by-pin error on one group fission and capture rates due to 

the Cartesian approximation of the reflector with a side equal to one assembly length. Case 2. 

 

The maximum error in the fuel is located at the outset corner, where the reflector 

thickness has changed the most between the two modellings. Maximum errors are higher, 

but RMS are similar to the homogenized cylindrical case. As before, the error in reactivity is 

negligible, but overestimations up to 10% are present in pins where the reflector capacity is 
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mostly changed. Our analysis here is that it is not possible to tolerate such errors without 

accepting strong biases throughout depletion and renouncing to have acceptable errors at 

the core-reflector interface. Figure 3.11 gives the errors spatial distribution while Table 3.9 

gives information about the values of the largest errors in function of their type, with one or 

two output groups. 

 

Table 3.8: Reactivity, fission, capture and total reaction rates errors in one and two groups, for the 

case of Cartesian reflector with a side of 1 assembly length. Case 2. 

Reference: APOLLO3® 1 group fast group thermal group 

Reactivity error (pcm) 9   

Fission rates error (%) 

min -0.26 -0.41 -0.26 

max 8.69 9.64 8.31 

RMS 0.24 0.19 0.25 

Capture rates error (%) 

min -0.33 -0.46 -0.26 

max 10.28 11.10 8.40 

RMS 0.25 0.24 0.26 

reflector 12.14 13.87 10.56 

Total rates error (%) 

min -0.38 -0.57 -0.26 

max 10.36 10.90 8.45 

RMS 0.29 0.27 0.36 

reflector 11.95 13.01 2.64 

 

3.3.3 Case 3: homogenized Cartesian reflector (0.5 assembly step) 

This case is an improvement of the previous one since we divided the step of the 

segmentation of the reflector by two. Fig. 3.12 depicts the computational mesh while Fig. 

3.13 gives the spatial error distribution. The maximum errors in the fuel are located at the 

corners, in this case they are negative. Detailed information about the values of strongest 

errors in function of their type and of the output mesh (one or two groups) is given in Table 

3.9. 

As for their order of magnitude, they remain similar to those of Case 2, more or less close 

to 10%. It is important here to remark that Cases 2 and 3 are the reflector geometry 

approximations adopted in industrial calculation schemes and that no direct equivalence is 

done to reduce the biases that we have described here. In fact, the only equivalence adopted 

is that of preserving mono-dimensional albedos that cannot reduce any of the errors 

described here. 
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Figure 3.12: ALAMOS model of the Cartesian reflector geometry with a step of 1/2 assembly side 

length. Case 3. 

         

Figure 3.13: Spatial distribution of the pin-by-pin error on one group fission and capture rates due to 

the Cartesian approximation of the reflector with a side equal to 1/2 assembly length. Case 3. 

 

Table 3.9: Reactivity, fission, capture and total reaction rates errors in one and two groups, for the 

case of Cartesian reflector with a side of 1/2 assembly length. Case 3. 

Reference: APOLLO3® 1 group fast group thermal group 

Reactivity error (pcm) 4   

Fission rates error (%) 

Min -5.88 -8.43 -5.32 

Max 1.39 1.26 1.44 

RMS 0.14 0.12 0.15 

Capture rates error (%) 

Min -8.16 -9.62 -5.34 

Max 1.56 2.39 1.43 

RMS 0.16 0.19 0.14 

reflector 13.91 16.93 12.03 

Total rates error (%) 

Min -9.55 -10.82 -5.50 

Max 1.46 2.16 1.37 

RMS 0.22 0.22 0.23 

Reflector 14.88 16.14 4.35 
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3.3.4 Case 4: homogenized Cartesian reflector (0.5 assembly step + square) 

In this case, we tried to approximate the reflector with a more representative 

segmentation curve, including an inset corner, and maintaining a ½ assembly (i.e., 10.21 

cm) length side. The maximum errors in the fuel are halved with respect to the previous 

case. Detailed information about the values of strongest errors in function of their type and 

of the output mesh (one or two groups) is given in Table 3.10. In Fig. 3.15 the spatial 

distribution of the errors can be found, while in Fig. 3.14 we depict the computational mesh. 

This geometrical model proves therefore to be more acceptable in practical cases without 

implying any overcharge. Having said that, it is evident anyway that a 5% error on reaction 

rates can entail important biases along depletion. 

  

          

Figure 3.14: ALAMOS model of the Cartesian reflector geometry with a step of 1/2 assembly side 

length including an inset corner. Case 4. 

          

Figure 3.15: Spatial distribution of the pin-by-pin error on one group fission and capture rates due to 

the Cartesian approximation of the reflector with a side equal to 1/2 assembly length with an inset 

corner. Case 4.  
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Table 3.10: Reactivity, fission, capture and total reaction rates errors in one and two groups, for the 

case of Cartesian reflector with a side of 1 assembly length with an inset core. Case 4. 

Reference: APOLLO3® 1 group fast group thermal group 

Reactivity error (pcm) 8   

Fission rates error (%) 

min -3.51 -4.71 -3.03 

max 0.99 1.55 1.09 

RMS 0.12 0.11 0.13 

Capture rates error (%) 

min -4.45 -5.06 -3.03 

max 1.78 2.63 1.10 

RMS 0.13 0.15 0.12 

reflector 14.03 18.48 11.32 

Total rates error (%) 

min -5.29 -6.33 -3.16 

max 1.78 2.40 1.05 

RMS 0.16 0.17 0.16 

reflector 16.08 17.52 3.94 

 

 

3.3.5 Case 5: homogenized Cartesian reflector (preserved volume) 

In this case, we considered an approximation where the Cartesian reflector is obtained 

by preserving the original volume. Hence, the Cartesianization step is equal to 16.915 cm. 

The computational mesh is shown in Fig. 3.16. As shown in the following, this model works 

quite better than the previous ones but suffers from the fact that the “core” solver should be 

able to treat non-conformal meshes. In the case of the MINOS solver of the APOLLO3® 

code this is possible but at the price of renouncing to use pure conformal Cartesian meshes 

that are much faster. As for nodal methods, the same could be said: using non conformal 

meshes is in the range of possibilities but it implies longer computational times. Here we 

study therefore this possibility in order to evaluate the biases, but to evaluate the break-even 

between a strong precision and a longer computational time this case should be studied at 

the core level. The final results are similar to those of Case 1.  

This could be considered quite surprising in fact, since the local geometry of the reflector 

is quite dissimilar to the correct one. But looking at Fig. 3.17 and Table 3.12, one finds that 

the errors are really similar to those of Case1. 
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Figure 3.16: ALAMOS model of the Cartesian reflector geometry with a step that preserves the 

volume. Case 5. 

 

Figure 3.17: Spatial distribution of the pin by pin error on one group fission and capture rates due to 

the Cartesian approximation of the reflector of the same volume as the reference one. Case 5. 

 

Table 3.11: Reactivity, fission, capture and total reaction rates errors in one and two groups, for the 

case of Cartesian reflector by preserving reflector volume. Case 5. 

Reference: APOLLO3® 1 group fast group thermal group 

Reactivity error (pcm) 12   

Fission rates error (%) 

min -0.23 -0.24 -0.23 

max 3.52 3.44 4.03 

RMS 0.21 0.17 0.22 

Capture rates error (%) 

min -0.23 -0.24 -0.23 

max 4.05 4.25 4.07 

RMS 0.21 0.20 0.23 

reflector 13.08 15.44 11.10 

Total rates error (%) 

min -0.24 -0.24 -0.23 

max 3.70 3.74 4.03 

RMS 0.23 0.21 0.29 

reflector 13.47 14.62 3.30 
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3.3.6 Case 6: homogenized Cartesian reflector (cell step) 

This case treats a computational mesh where the size of the reflector segmentation is 

that of the cell length (i.e., 1.26 cm). This limit case is that of the highest possible precision 

in core calculations. Figs 3.18 and 3.19 describe the computational mesh and the error 

spatial distribution, while Table 3.13 gives the values of strongest errors per type of reaction 

rate and in function of output energy mesh. 

As expected, with this mesh the errors are of the same order of those of Case 1 (where 

only the smearing of water holes was done). 

 

Figure 3.18: ALAMOS model of the Cartesian reflector geometry with a segmentation step equal to 

the cell side length. Case 6. 

        

Figure 3.19: Spatial distribution of the pin-by-pin error on one group fission and capture rates due to 

the Cartesian approximation of the reflector of the same volume as the reference one. Case 6. 
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Table 3.13: Reactivity, fission, capture and total reaction rates errors in one and two groups, for the 

case of Cartesian reflector with a segmentation length equal to the cell side. Case 6. 

Reference: APOLLO3® 1 group fast group thermal group 

Reactivity error (pcm) 17   

Fission rates error (%) 

min -0.32 -0.33 -0.32 

max 4.26 2.96 4.80 

RMS 0.28 0.23 0.29 

Capture rates error (%) 

min -0.32 -0.32 -0.32 

max 3.86 3.45 4.84 

RMS 0.28 0.26 0.31 

reflector 13.97 19.92 10.18 

Total rates error (%) 

min -0.32 -0.33 -0.32 

max 2.94 2.77 4.81 

RMS 0.31 0.28 0.38 

reflector 17.56 19.26 3.06 

 

3.3.7 Case 7: exact cylindrical reflector + multi-zone + octagonal water holes 

In the actual version of APOLLO3®, when an external geometry (reflector meshed with 

ALAMOS) is imported and merged with native geometry, the arcs included into the external 

geometry are transformed into segments. This anomaly was present in our initial Case 1 in 

the deterministic calculation but was correctly represented (with arc of circles) in the 

TRIPOLI-4® calculation. To avoid volume difference of material (with respect to the initial 

benchmark specification), a solution is to add an extra circle or a polygonal mesh. This case 

is here studied to verify that the previously defined Case 1 is coherent and that we have not 

introduced any error due to this geometrical approximation. It is worth noting that in future 

version of APOLLO3®, taking advantage of the work described in Appendix A, such problem 

will be overcome. 

 

Figure 3.19a: From ALAMOS to APOLLO3® with extra circle. Case of multizoning in subsection 3.2.1. 
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Figure 3.19b: From ALAMOS to APOLLO3® with polygonal mesh. Case 7. 

An important point anyway is the fact that when using the native geometrical capabilities 

one can easily define shielding and depletion schemes onto different geometries and, if 

these geometries are built in a hierarchical way, the code itself can reconstruct the 

geometrical links between the different models. When using an external geometry, it is up 

to the external code (in this case ALAMOS) to provide the geometrical equivalence data. 

Figure 3.19a describes all the cases (2 extra segments in case of sub-section 3.2.1 for 

the multizoning) except case 8 which is described in the added figure (Fig.3.19b) with 

octagonal mesh in Alamos instead of extra circle. Moreover, material properties in the 

reflector are also divide into 4 zones passing to the side of the water holes (Fig.3.21) but in 

the middle in the case of sub-section 3.2.1. 

Figs 3.19 and 3.20 and Table 3.14 describe the situation. They confirm that the previous 

Case 1 is correct and that the previous analyses are coherent with the geometrical and 

material description of the reference case. 

 

 

Figure 3.20: From ALAMOS to APOLLO3® with extra circle. Case 7. 
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Table 3.14: Fission, capture and total errors on one and two groups, for the case of exact reflector 

geometry with explicit water holes with polygonal meshes. Comparisons with respect to TRIPOLI-4® 

results. Case 7. 

Reference: TRIPOLI-4® 1 group fast group thermal group 

Reactivity error (pcm) -219   

Fission rates error (%) 

min -0.97 -0.55 -2.36 

max 1.42 1.39 1.66 

RMS 0.41 0.68 0.45 

Capture rates error (%) 

min -1.24 -2.11 -1.71 

max 1.36 2.21 1.60 

RMS 0.52 0.85 0.38 

reflector 5.05 9.70 2.27 

Total rates error (%) 

min -0.29 -0.06 -0.89 

max 1.23 1.24 2.03 

RMS 0.25 0.26 0.40 

reflector 4.81 5.15 1.92 

 

3.3.8 Case 8: exact cylindrical reflector + extended fuel slice 

In this last case, we increased the active fissile part in the reflector model of Fig. 3.3 and 

included in it up to 5 fissile assemblies. The rationale behind this is to improve the neutron 

spectrum used to homogenize the reflector cross sections, having a global reactivity for the 

reflector model which is closer to the critical value. As shown in Table 3.15, there is not clear 

improvement, probably because the residual error remaining is due to reflector self-shielding 

or peripheral treatment of fissile assemblies.  

 

Table 3.15: Reactivity, fission, capture and total reaction rates errors in one and two groups, for the 

case of exact reflector and extended reflector self-shielding model (with 5 fissile assemblies). Case 8. 

Reference: TRIPOLI-4® 1 group fast group thermal group 

Reactivity error (pcm) -221   

Fission rates error (%) 

min -0.97 0.54 -2.33 

max 1.59 1.41 1.85 

RMS 0.40 0.69 0.44 

Capture rates error (%) 

min -0.89 -1.11 -1.71 

max 1.58 2.02 1.70 

RMS 0.53 0.86 0.38 

reflector 3.32 3.22 3.34 

Total rates error (%) 

min -0.28 -0.03 -0.89 

max 1.27 1.22 2.03 

RMS 0.24 0.25 0.39 

reflector 3.69 3.75 3.06 
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4 The new LS-xy method 

In this section, we explain the basics of the LS-xy scheme newly developed in the TDT 

lattice solver of APOLLO3®. It is an enhanced methodology with respect to the standard SC 

or of the alternative higher order LS method. The section is a synthetic version of the paper 

[16] to which we refer the interested reader for a complete description.  

 

4.1 The LS scheme 

The basic SC transmission equation can be written as: 

𝜓+ = 𝛽(𝑞 − 𝜓−) + 𝜓−, 

4.1 

which is simply a rewritten form of Eq. 4.2 for the case of constant emission density per 

computational region. In Eq. 4.1, 𝛽 = 1 − 𝑒−𝜏 and we used the same notation as in Eqs. 4.4 

and in the following ones. The numerical approximation used in Eq. 4.1 is quite rude and 

can be improved by allowing a linear emission density representation. To this aim, in the LS 

scheme of APOLLO2 (and then APOLLO3®) it has been envisaged to interpolate linearly 

among surface values [15].  

To explain this approach, let us suppose that the boundary of a computational region 𝐷𝑖 

(𝜕𝐷𝑖) is divided in 𝑁𝑆 surfaces4 as illustrated in Fig 4.1. Within 𝐷𝑖, the flux angular moments 

are interpolated along each trajectory according to 

�⃗� 𝑡(𝑠) =
1

2
(�⃗� 𝛼𝑜𝑢𝑡,𝑡 + �⃗� 𝛼𝑖𝑛,𝑡) +

𝑠

𝑙𝑡
(�⃗� 𝛼𝑜𝑢𝑡,𝑡 − �⃗� 𝛼𝑖𝑛,𝑡) + 𝛿𝜙

⃗⃗⃗⃗  ⃗ ,  

4.2 

where 𝛿𝜙⃗⃗⃗⃗  ⃗ is a free volumetric parameter, while �⃗� 𝛼𝑖𝑛,𝑡 and �⃗� 𝛼𝑜𝑢𝑡,𝑡 are the surface-averaged 

flux angular moments at the entering and exiting points of the trajectory. These averages 

are calculated as 

�⃗� 𝛼 =
1

4𝜋𝑆𝛼
∫ d
4𝜋

𝛀∫ d
𝛼
𝑆 𝐴 (𝛀)𝜓(𝐫𝑆, 𝛀) ≈

1

𝑆𝛼
∑ 𝜔𝑛𝑛 𝐴 (𝛀𝑛)∑

𝜔𝑡,𝛼
⊥

|𝛀𝑛⋅𝐧|
𝑡∥𝛀𝑛,𝑡∩𝛼 𝜓𝑡,𝛼(𝛀𝑛),  

4.3 

where 𝐴  is the set of real spherical harmonics5 (defined in [16]), 𝛀𝑛 and 𝜔𝑛 the angular 

quadrature abscissas and weights, 𝜔𝑡,𝛼
⊥  is the portion of cross sectional area affected by the 

trajectory, and 𝑆𝛼 is the area of surface 𝛼 evaluated as follows according to the trajectory-

based discretization: 

𝑆𝛼 =
1

4𝜋
∫ d
4𝜋

𝛀∫d
𝛼

𝑆 ≈∑𝜔𝑛
𝑛

∑
𝜔𝑡,𝛼
⊥

|𝛀𝑛 ⋅ 𝐧|
𝑡∥𝛀𝑛,𝑡∩𝛼

. 

 

 

4 In TDT, the number of surfaces in which each boundary is divided is calculated as 𝑁𝑆 = min(
𝛬

𝜆min
, 𝑁𝑆

max), 

where 𝛬 is the length of the boundary element and 𝑁𝑆
max and 𝜆min are two user-defined constants representing 

the maximum number of divisions requested and the minimum acceptable length of each resulting surface. 

5 We adopt the vector notation 𝐴 (𝛀) := {𝐴𝜌(𝛀), 𝜌 = 1,… ,𝑁𝑚}, where 𝑁𝑚 = [(𝐿 + 1)(𝐿 + 2)]/2, 𝐿 being the 

maximum anisotropy order. 
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Eq. 4.2 enforces the implicit dependence of �⃗�  within a region on the direction 𝛀, thus 

making the approximation not coherent6. Moreover, the flux moments are discontinuous 

across region interfaces, and this is necessary for a conservative scheme. In fact, particle 

conservation is enforced by suitable definition of 𝛿𝜙⃗⃗⃗⃗  ⃗ in each region, as showed in the 

following. 

 

4.1.1 Transmission equation 

After introducing an LS approximation of the external source coherent to Eq. 4.2, we can 
plug it into the following integral transport equation 

𝜓𝑡(𝑠) = 𝜓𝑡
𝑖𝑛𝑒−𝛴(𝑠+

𝑙𝑡
2
) + ∫ d

𝑠

−𝑙𝑡/2
𝑠′ 𝑞𝑡(𝐫𝑡

𝑚 + 𝑠′𝛀) 𝑒−𝛴(𝑠−𝑠′),  

4.4 

from which the transmission equation is derived: 

𝜓𝑡
𝑜𝑢𝑡 = 𝜓𝑡

𝑖𝑛𝑒−𝛴𝑙𝑡 + ∫ d
𝑙𝑡/2

−𝑙𝑡/2
𝑠 𝑞𝑡(𝐫𝑡

𝑚 + 𝑠𝛀)𝑒−𝛴(
𝑙𝑡
2
−𝑠) .  

4.5  

Here, 𝜓𝑡
𝑖𝑛/𝑜𝑢𝑡

 are the angular fluxes at the entering/exiting point of the trajectory, whose 

midpoint is 𝐫𝑡
𝑚 = (𝐫𝑡

𝑖𝑛 + 𝐫𝑡
𝑜𝑢𝑡)/2; 𝑙𝑡 is the chord length within 𝐷𝑖, whose half and optical 

counterpart are respectively indicated with 𝛥𝑡 = −𝑙𝑡/2 and 𝜏𝑡 = 𝛴𝑙𝑡 in the remainder for the 

sake of conciseness. A sketch of the situation is depicted in Fig. 4.1. Finally, 𝑠 ∈ [−𝛥𝑡 , 𝛥𝑡] is 

a local coordinate along the trajectory.  
 

 

Figure 4.1 : Sketch of the transmission equation over a trajectory cutting a computational region DI. 

Note the middle point in chord, and the input/output chord position and the presence of the 

barycenter in the region.  
 

 

 

6 In the sense that, at a certain location within 𝐷𝑖, it can predict different values of �⃗�  for different directions 

𝛀. 
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The transmission integral can then be evaluated analytically, resulting into the LS 

transmission equation: 

𝜓𝑡
𝑜𝑢𝑡 = 𝜓𝑡

𝑖𝑛(1 − 𝛽0(𝜏𝑡)) + (�̃�𝛼𝑖𝑛,𝑡 + 𝛿�̃�)𝛽0(𝜏𝑡) + (�̃�𝛼𝑜𝑢𝑡,𝑡 − �̃�𝛼𝑖𝑛,𝑡)𝛽1(𝜏𝑡) ,  

4.6 

where 

�̃�𝛼𝑖𝑛/𝛼𝑜𝑢𝑡,𝑡 =
𝑞𝛼𝑖𝑛/𝛼𝑜𝑢𝑡,𝑡

𝛴
 ,

𝛿�̃� =
𝛿𝑞

𝛴
 ,

 

4.7 

and the 𝛽𝑚 are spectral factors defined by 

𝛽0(𝜏) = 1 − 𝑒−𝜏,     𝛽1(𝜏) = 1 −
1

𝜏
(1 − 𝑒−𝜏). 

4.8 

4.1.2 Geometric average 

Let 𝒢 be a geometric average operator over region 𝐷𝑖. According to the trajectory-based 
discretization, it is defined as 

𝒢(𝑓(𝐫)) = 𝑓𝐺 =
1

4𝜋𝑉𝑁
∫ d
4𝜋

𝛀∫ d
𝐷𝑖

𝐫 𝑓(𝐫) =
1

4𝜋𝑉𝑁
∫ d
4𝜋

𝛀∫ d
𝜕𝐷𝑖,⊥

𝑆⊥∫ d
𝛥𝑡

−𝛥𝑡

𝑠 𝑓(𝐫𝑡
𝑚 + 𝑠𝛀)

≈
1

4𝜋𝑉𝑁
∫ d
4𝜋

𝛀 ∑ ∑ 𝜔𝑡,𝛼
⊥

𝑡∥𝛀,𝑡∩𝛼𝛼∈𝜕𝐷𝑖

 𝑙𝑡 ⟨𝑓⟩ ,

 

4.9 

where 𝜕𝐷𝑖,⊥ is the projection of 𝜕𝐷𝑖 on the plane perpendicular to 𝛀, d𝑆⊥ = d𝑆|𝛀 ⋅ 𝐧|, ⟨𝑓⟩ is 

the average of function 𝑓 along the chord, and 𝑉𝑁 is the numerical volume of region 𝐷𝑖: 

𝑉𝑁 =
1

4𝜋
∫ d
4𝜋

𝛀 𝑉(𝛀) =
1

4𝜋
∫ d
4𝜋

𝛀∑ 𝜔𝑡,𝛼
⊥

𝛼,𝑡  𝑙𝑡 .  

4.10 

Here, we introduced the short hand notation ∑ =𝛼,𝑡 ∑ ∑𝑡∥𝛀,𝑡∩𝛼𝛼∈𝜕𝐷𝑖  that we will use for 

commodity throughout the rest of the section. 

We can calculate the geometric average of the flux angular moments by plugging their 

LS approximation into Eq. 4.9: 

�⃗� 𝐺 =
1

4𝜋𝑉𝑁
∫ d
4𝜋

𝛀∑𝜔𝑡,𝛼
⊥

𝛼,𝑡

 𝑙𝑡
�⃗� 𝛼𝑖𝑛,𝑡 + �⃗�

 
𝛼𝑜𝑢𝑡,𝑡

2
+

1

4𝜋𝑉𝑁
∫ d
4𝜋

𝛀∑𝜔𝑡,𝛼
⊥

𝛼,𝑡

𝑙𝑡 𝛿𝜙⃗⃗⃗⃗  ⃗ = ∑ 𝕄𝛼

𝛼∈𝜕𝐷𝑖

�⃗� 𝛼 + 𝛿𝜙⃗⃗⃗⃗  ⃗ , 

4.11 

where we introduced 𝕄𝛼, which is a matrix operator to be applied to surface-averaged 
values whose expression can be found in [16]. 
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4.1.3 Balance equation 

By projecting the mono-group transport equation onto the set of spherical harmonics 𝐴 (𝛀) 
and integrating over in angle and over region 𝐷𝑖, we obtain a balance equation for the flux 
angular moments: 

𝑉𝛴�⃗� 𝐶 = 𝑉𝔸�⃗� 𝐶 − 𝛥𝐽  ,  

4.12 

where 

�⃗� 𝐶 =
1

𝑉
∫ d
𝐷𝑖

𝐫 �⃗� (𝐫) , 

are the region-averaged7 flux angular moments8, and 𝔸 is the matrix resulting from the 

integral of the harmonics tensor product, 

𝔸 =
1

4𝜋
∫ d
4𝜋

𝛀𝐴 (𝛀)⊗ 𝐴 (𝛀) = diag (
1

2𝑘 + 1
) . 

The streaming term is evaluated according to 

−𝛥𝐽 = 𝐽 − − 𝐽 + =
1

4𝜋
∫ d
4𝜋

𝛀𝐴 (𝛀)∫ d
𝜕𝐷𝑖,⊥

𝑆⊥(𝜓𝑡
𝑖𝑛 − 𝜓𝑡

𝑜𝑢𝑡)

≈ ∑𝜔𝑛
𝑛

𝐴 (𝛀𝑛) ∑ 𝜔𝑡
⊥

𝑡∥𝛀𝑛,𝑡∩𝐷𝑖

(𝜓𝑡
𝑖𝑛 − 𝜓𝑡

𝑜𝑢𝑡) ,
 

where the term in brackets is directly computed from the transmission equation 4.6. 

Finally, the region-averaged emission density angular moments �⃗� 𝐶 are calculated with the 

region-averaged flux angular moments from the previous inner iteration, 

�⃗� 𝐶 =
1

𝑉
∫ d
𝐷𝑖

𝐫𝑞 = 𝚺𝑠�⃗� 𝐶 + 𝑞 ext,𝐶 ≈ 𝚺𝑠�⃗� 𝐺 + 𝑞 ext,𝐺 = �⃗� 𝐺  . 

Eq. 4.12 gives a conservative average flux in 𝐷𝑖 that is coherent with the computed 

currents, but it is not numerically coherent with the transmission equation, in the sense that 

it cannot be derived from it. This matter is discussed in detail in [16]. 

 

4.1.4 Enforce conservation 

Eq. 4.12 is an approximation because, even at convergence, there is no guarantee that 

the computed region-averaged flux angular moments coincide with those computed with 

operator of Eq. 4.11. Therefore, in order to have a conservative method, we must impose 

that in all regions 

 

 
7 Note that here we use the analytical volume of region 𝐷𝑖 and not its numerically evaluated counterpart 𝑉𝑁. 

This is to ensure numerical robustness even when the trajectory-based discretization is coarse. 

8 The subscript 𝐶 indicates that the region-averaged flux angular moments satisfy particle balance (i.e., 

they are conservative) 
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�⃗� 𝐺 = �⃗� 𝐶  ,  

4.13 

which leads to the criterion necessary to fix the free parameter 𝛿𝜙⃗⃗⃗⃗  ⃗: 

𝛿𝜙⃗⃗⃗⃗  ⃗ = �⃗� 𝐶 − ∑ 𝕄𝛼𝛼∈𝜕𝐷𝑖
�⃗� 𝛼 .  

4.14 

This makes the LS scheme non-positive, even though negative values of the surface-

averaged flux angular moments can appear only with very coarse discretizations. 

 

4.2 The LS-xy method 

The LS scheme can only preserve the constant flux spatial moment. To overcome this 

limitation, we propose here a more advanced surface-based MOC scheme named LS-xy. 

 

4.2.1 Source approximation 

The flux angular moments are interpolated along each trajectory crossing region 𝐷𝑖 
according to 

�⃗� 𝑡(𝑠) =
1

2
(�⃗� 𝛼𝑜𝑢𝑡,𝑡 + �⃗� 𝛼𝑖𝑛,𝑡) +

𝑠

𝑙𝑡
(�⃗� 𝛼𝑜𝑢𝑡,𝑡 − �⃗� 𝛼𝑖𝑛,𝑡) + 𝛿𝜙

⃗⃗⃗⃗  ⃗(𝑠) ,  

4.15 

with 

𝛿𝜙⃗⃗⃗⃗  ⃗(𝑠) = 𝛿𝜙1⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝛅𝛟𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⋅ ((𝐫 − 𝐫𝑐) ⊘ 𝐫∗) = 𝛿𝜙1⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝛅𝛟𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⋅ ((𝐫𝑡
𝑚 − 𝐫𝑐) ⊘ 𝐫∗) + 𝑠 𝛅𝛟𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⋅ (𝛀⊘ 𝐫∗), 

where ⊘ is used to indicate the vector element-wise division, and 𝐫∗ is the vector whose 
components are the characteristic dimensions of region 𝐷𝑖 in each direction9. Similarly to 

what done by [5] for the polynomial expansion of the flux in the 𝑧 direction, we choose 

𝐫∗ : = [𝑥∗, 𝑦∗]𝑇 = [
𝛥𝑥

2
,
𝛥𝑦

2
]
𝑇

= [
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

2
,
𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

2
]
𝑇

 . 

Hence, we can rewrite Eq. 4.15 as 

 

 

9 Note that here and in the rest of the section we adopted a double vector notation. The arrow in 𝛅𝛟𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

indicates multiple angular moments, while the boldface font stands for multiple spatial components. Hence, for 

example, must be read as a compact way of writing 𝑁𝑚 equations (one for each angular moment) in each of 

which the scalar product operator acts only on the spatial components of 𝛅𝛟𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . 
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�⃗� 𝑡(𝑠) =  
1

2
(�⃗� 𝛼𝑜𝑢𝑡,𝑡 + �⃗� 𝛼𝑖𝑛,𝑡) + 𝛿𝜙

1⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝛅𝛟𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⋅ ((𝐫𝑡
𝑚 − 𝐫𝑐) ⊘ 𝐫∗)

+ [�⃗� 𝛼𝑜𝑢𝑡,𝑡 − �⃗� 𝛼𝑖𝑛,𝑡 + 𝛅𝛟
𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⋅ (𝛀⊘ 𝐫∗)𝑙𝑡]

𝑠

𝑙𝑡
 .

 

4.16 

Here, 𝛿𝜙1⃗⃗ ⃗⃗ ⃗⃗  ⃗ is a constant component as the one in Eq 4.2 valid for the basic LS method, 

while 𝛅𝛟𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = [𝛿𝜙𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝛿𝜙𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ]𝑇 is the variation of 𝛿𝜙⃗⃗⃗⃗  ⃗(𝑠) in 𝐷𝑖 (i.e., 𝛅𝛟𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⊘ 𝐫∗ is representative of 

the gradient of 𝛿𝜙⃗⃗⃗⃗  ⃗(𝑠) in 𝐷𝑖). In the LS-xy therefore, the flux correction term is allowed to vary 

in space, thus improving the flux description within the region. In fact, it is the higher number 

of free parameters with respect to the classic LS model that allows for imposing the 

conservation of the 𝑥-𝑦 spatial moments of the flux. Finally, 𝐫𝑐 is a reference point within 𝐷𝑖 

(see [16] for the explicit choice of it as the barycenter of the computational region) and it is 

another free parameter of the problem. Note that also with this approximation �⃗�  depends on 

the direction 𝛀 and so it is not coherent. 

Introducing an LS-xy approximation of the external source coherent to Eq. 4.15, the 

emission density can be evaluated according to 

𝑞𝑡(𝑠) =
1

2
(𝑞𝛼𝑜𝑢𝑡,𝑡 + 𝑞𝛼𝑖𝑛,𝑡) +

𝑠

𝑙𝑡
(𝑞𝛼𝑜𝑢𝑡,𝑡 − 𝑞𝛼𝑖𝑛,𝑡) + 𝛿𝑞(𝑠) , 

where 𝛿𝑞(𝑠) can be expressed as 𝛿𝜙⃗⃗⃗⃗  ⃗(𝑠). 

4.2.2 Transmission equation 

By substituting Eq. 4.15 in Eq 4.5 and by calculating the transmission integral analytically, 
we find 

𝜓𝑡
𝑜𝑢𝑡 = 𝜓𝑡

𝑖𝑛(1 − 𝛽0(𝜏𝑡)) + (
�̃�𝛼𝑖𝑛,𝑡 + �̃�𝛼𝑜𝑢𝑡,𝑡

2
+ 𝛿�̃�1 + 𝛅�̃�𝑥𝑦 ⋅ ((𝐫𝑡

𝑚 − 𝐫𝑐) ⊘ 𝐫∗))
⏟                                

𝒜𝑡

𝛽0(𝜏𝑡)

+(�̃�𝛼𝑜𝑢𝑡,𝑡 − �̃�𝛼𝑖𝑛,𝑡 + 𝛅�̃�
𝑥𝑦 ⋅ (

𝑙𝑡𝛀

𝐫∗
))

⏟                    
ℬ𝑡

𝜉(𝜏𝑡),

 

4.17 

where the ~ indicates that the corresponding source term was divided by 𝛴, and 𝒜𝑡 and ℬ𝑡 
are two trajectory functions. The spectral factor 𝜉 is defined as 

𝜉(𝜏) = [
1

2
(1 + 𝑒−𝜏) −

1

𝜏
(1 − 𝑒−𝜏)] = 1 − (

1

2
+
1

𝜏
) 𝛽0(𝜏)  

4.17b 

 

and is tabulated, together with 𝛽0. We notice that only a few more operations have to be 

performed compared to Eq. 4.6, thus guaranteeing a minimal increase of computational cost 

with respect to the classic LS scheme. 
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4.2.3 Geometric averages 

The terms 𝛿𝜙1⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝛅𝛟𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   are calculated in order to ensure that the approximation is 

conservative. This is done following the same principle as in Section 4.1.4, that is, by 

imposing that the geometrical average must be equal to the conservative average coming 

from the balance equation. However, the presence of extra unknowns (the components of 

𝛅𝛟𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) requires writing three balance equations, which are found by projecting on the spatial 

bases functions {1,
𝑥−𝑥𝑐

𝑥∗
,
𝑦−𝑦𝑐

𝑦∗
}
𝑇
, where (𝑥𝑐 , 𝑦𝑐)

𝑇 are the components of 𝐫𝑐. As a consequence, 

three geometrical averages must be defined (after introducing a proper expression for 𝐫𝑐, 

see [16]). 

Constant average 

For the constant spatial component, we can use the same geometric average operator 
defined in for the classic LS scheme. By plugging-in the LS-xy flux interpolation along a 
chord (Eq. 4.16), one finds 

�⃗� 𝐺
1 =  

1

4𝜋𝑉𝑁
∫ d
4𝜋

𝛀∑𝜔𝑡,𝛼
⊥

𝛼,𝑡

{
𝑙𝑡
2
(�⃗� 𝛼𝑖𝑛,𝑡 + �⃗�

 
𝛼𝑜𝑢𝑡,𝑡) + 𝑙𝑡 [𝛿𝜙

1⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝛅𝛟𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⋅ ((𝐫𝑡
𝑚 − 𝐫𝑐) ⊘ 𝐫∗)]}

=  ∑𝕄𝛼

𝛼

�⃗� 𝛼 + 𝛿𝜙
1⃗⃗ ⃗⃗ ⃗⃗  ⃗ ,

 

4.18 

where we used the definitions of 𝑉𝑁 (Eq. 4.10) and 𝐫𝑐. Note that, unsurprisingly, we obtained 
a constant flux average very similar to Eq. 4.11. 

Linear averages 

Let 𝓖𝑥𝑦 = [𝒢𝑥, 𝒢𝑦]𝑇 be a vector operator returning the 𝑥-𝑦 geometrical averages of a 

function𝑓(𝐫). According to the trajectory-based discretization, it is defined as follows: 

𝓖𝑥𝑦(𝑓(𝐫)) = 𝐟𝐺
𝑥𝑦
=

1

4𝜋𝑉𝑁
∫ d
4𝜋

𝛀∫ d
𝐷𝑖

𝐫((𝐫 − 𝐫𝑐) ⊘ 𝐫∗)𝑓(𝐫)

=  
1

4𝜋𝑉𝑁
∫ d
4𝜋

𝛀∫ d
𝜕𝐷𝑖,⊥

𝑆⊥∫ d
𝛥𝑡

−𝛥𝑡

𝑠 [(𝐫𝑡
𝑚 − 𝐫𝑐) ⊘ 𝐫∗ + 𝑙𝑡(𝛀⊘ 𝐫∗)

𝑠

𝑙𝑡
] 𝑓(𝐫𝑡

𝑚 + 𝑠𝛀)

=  
1

4𝜋𝑉𝑁
∫ d
4𝜋

𝛀∑𝜔𝑡,𝛼
⊥

𝛼,𝑡

((𝐫𝑡
𝑚 − 𝐫𝑐) ⊘ 𝐫∗)𝑙𝑡 ⟨𝑓⟩

+
1

4𝜋𝑉𝑁
∫ d
4𝜋

𝛀∑𝜔𝑡,𝛼
⊥

𝛼,𝑡

(𝛀⊘ 𝐫∗)𝑙𝑡
2  ⟨
𝑠

𝑙𝑡
𝑓⟩  .

 

4.19 

By plugging the flux LS-xy approximation given by Eq. 4.16 into the last two integrals (i.e., 
we apply the averaging operator 𝓖𝑥𝑦 to each flux angular moment separately), after some 
algebra, and exploiting the definition of 𝐫𝑐, one can find the linear averages of the neutron 
flux angular moments: 
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�⃗⃗⃗� 𝐺
𝑥𝑦
=  

1

4𝜋𝑉𝑁
∫ d
4𝜋

𝛀∑𝜔𝑡,𝛼
⊥

𝛼,𝑡

((𝐫𝑡
𝑚 − 𝐫𝑐) ⊘ 𝐫∗)

𝑙𝑡
2
(�⃗� 𝛼𝑖𝑛,𝑡 + �⃗�

 
𝛼𝑜𝑢𝑡,𝑡)

+
1

4𝜋𝑉𝑁
∫ d
4𝜋

𝛀∑𝜔𝑡,𝛼
⊥

𝛼,𝑡

(𝛀⊘ 𝐫∗)
𝑙𝑡
2

12
(�⃗� 𝛼𝑜𝑢𝑡,𝑡 − �⃗� 𝛼𝑖𝑛,𝑡)

+
𝛅𝛟𝑥𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

4𝜋𝑉𝑁
⋅ {  ∫ d

4𝜋

𝛀∑𝜔𝑡,𝛼
⊥

𝛼,𝑡

𝑙𝑡[((𝐫𝑡
𝑚 − 𝐫𝑐) ⊘ 𝐫∗) ⊗ ((𝐫𝑡

𝑚 − 𝐫𝑐) ⊘ 𝐫∗)]

     +∫ d
4𝜋

𝛀∑𝜔𝑡,𝛼
⊥

𝛼,𝑡

𝑙𝑡
3

12
[(𝛀⊘ 𝐫∗) ⊗ (𝛀⊘ 𝐫∗)]} .

 

By switching to a notation where we leave the spatial moments explicit, we can rewrite it in 
in matrix form as 

[
�⃗� 𝐺
𝑥

�⃗� 𝐺
𝑦]  =  ∑  𝛼 [

𝕄𝛼
𝑥�⃗� 𝛼

𝕄𝛼
𝑦
�⃗� 𝛼
] + [

𝕄𝑉
𝑥,𝑥 𝕄𝑉

𝑥,𝑦

𝕄𝑉
𝑦,𝑥

𝕄𝑉
𝑦,𝑦]  [

𝛿𝜙𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝛿𝜙𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
] ,  

4.20 

where we have introduced new surface geometrical factors, 𝕄𝛼
𝑥  and 𝕄𝛼

𝑦
 (they are the 

extension of 𝕄𝛼 to the 𝑥-𝑦 equations) and the volumetric geometrical factor 𝕄𝑉. In [16], we 

demonstrate that 𝕄𝑉 has the following corresponding analytical expression: 

𝕄𝑉 =
1

𝑉
∫ d𝐫((𝐫 − 𝐫𝑐) ⊘ 𝐫∗) ⊗ ((𝐫 − 𝐫𝑐) ⊘ 𝐫∗) . 

This operator is symmetric but diagonal only in those regions where the 𝑥-𝑦 basis 

functions are orthogonal. Unfortunately, the unstructured meshes used in TDT include 

regions that do not satisfy this condition, so system Eq. 4.20 must be solved entirely. 

 

4.2.4 Constant balance 

By projecting the mono-group transport equation onto the set of spherical harmonics 𝐴 (𝛀)  
and integrating over region 𝐷𝑖, we can write the constant balance equation for the flux 

angular moments over region 𝐷𝑖: 

𝑉𝛴�⃗� 𝐶
1 = 𝑉𝔸�⃗� 𝐶

1 − 𝛥𝐽 1 , 

4.21 

where �⃗� 𝐶
1 is defined as in and �⃗� 𝐶

1 is calculated as in for the classic LS scheme. Finally, 

−𝛥𝐽 1 = 𝐽 −
1 − 𝐽 +

1 ≈ ∑ 𝜔𝑛𝑛 𝐴 (𝛀𝑛) ∑ 𝜔𝑡
⊥

𝑡∥𝛀𝑛,𝑡∩𝐷𝑖 (𝜓𝑡
𝑖𝑛 − 𝜓𝑡

𝑜𝑢𝑡) ,  

4.22 

with (𝜓𝑡
𝑖𝑛 − 𝜓𝑡

𝑜𝑢𝑡) computed from Eq. 4.17. 

4.2.5 Linear balance 

For conciseness and to lighten the notation, we treat only the 𝑥 balance equation. The 

extension of the following reasoning to the 𝑦-equation is straightforward. 
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We multiply the mono-group transport equation by 
𝐴 (𝛀)

4𝜋

𝑥−𝑥𝑐

𝑥∗
 and then integrate over angles 

and region 𝐷𝑖. The following 𝑥 balance equation for the angular flux moments can thus be 

obtained (omitting dependencies): 

𝛴∫ d
𝐷𝑖

𝐫 (
𝑥 − 𝑥𝑐
𝑥∗

) �⃗� = −
1

4𝜋
∫ d
4𝜋

𝛀𝐴 ∫ d
𝐷𝑖

𝐫 (
𝑥 − 𝑥𝑐
𝑥∗

) (𝛀 ⋅ 𝛻𝜓) + 𝔸∫ d
𝐷𝑖

𝐫 (
𝑥 − 𝑥𝑐
𝑥∗

) 𝑞  . 

We can then introduce the first-order conservative average of the flux, 

�⃗� 𝐶
𝑥 =

1

𝑉
∫ d
𝐷𝑖

𝐫 (
𝑥 − 𝑥𝑐
𝑥∗

) �⃗�  , 

and of the emission density, which is again calculated with the 𝑥-averaged fluxes from the 
previous inner iteration: 

�⃗� 𝐶
𝑥 =

1

𝑉
∫ d
𝐷𝑖

𝐫 (
𝑥 − 𝑥𝑐
𝑥∗

) 𝑞 = �⃗� 𝐺
𝑥 = 𝚺𝑠�⃗� 𝐺

𝑥 + 𝑞 ext,𝐺
𝑥  . 

The integral of the streaming term can be rewritten as: 

−
1

4𝜋
∫ d
4𝜋

𝛀𝐴 ∫ d
𝐷𝑖

𝐫 (
𝑥 − 𝑥𝑐
𝑥∗

) (𝛀 ⋅ 𝛻𝜓)  = −
1

4𝜋
∫ d
4𝜋

𝛀𝐴 ∫ d
𝜕𝐷𝑖

𝑆(𝛀 ⋅ 𝐧)𝜓 (
𝑥 − 𝑥𝑐
𝑥∗

) +
1

4𝜋
∫ d
4𝜋

𝛀𝐴  
𝛺𝑥
𝑥∗
∫ d
𝐷𝑖

𝐫𝜓 , 

which we compactly rewrite as 

−𝛥𝐽 𝑥 = −𝛥𝐽 1
𝑥 + 𝛥𝐽 2

𝑥 .  

4.23 

From here, we could proceed in two ways, described in  [16] as Approach A and B. While 
Approach A is simpler, it is unstable and therefore we do not report here. This matter is 
discussed in [16]. Here instead we describe only the stable approach. 

Approach B 

To enforce stability in the LS-xy scheme we rewrite the two terms in Eq 4.23 as: 

−𝛥𝐽 1
𝑥 ≈ ∑𝜔𝑛

𝑛

𝐴 (𝛀𝑛) ∑ 𝜔𝑡
⊥

𝑡∥𝛀𝑛,𝑡∩𝐷𝑖

[𝜓𝑡
𝑖𝑛 (

𝑥𝑡
𝑚 − 𝛥𝑡𝛺𝑥,𝑛 − 𝑥𝑐

𝑥∗
) − 𝜓𝑡

𝑜𝑢𝑡 (
𝑥𝑡
𝑚 + 𝛥𝑡𝛺𝑥,𝑛 − 𝑥𝑐

𝑥∗
)]

= ∑𝜔𝑛
𝑛

𝐴 (𝛀𝑛) ∑ 𝜔𝑡
⊥

𝑡∥𝛀𝑛,𝑡∩𝐷𝑖

[
𝑥𝑡
𝑚 − 𝑥𝑐
𝑥∗

(𝜓𝑡
𝑖𝑛 − 𝜓𝑡

𝑜𝑢𝑡) −
𝑙𝑡𝛺𝑥,𝑛
𝑥∗

(
𝜓𝑡
𝑖𝑛 + 𝜓𝑡

𝑜𝑢𝑡

2
)]  ,

 

and  

𝛥𝐽 2
𝑥 =

1

4𝜋
∫ d
4𝜋

𝛀𝐴  
𝛺𝑥
𝑥∗
∫ d
𝐷𝑖

𝐫𝜓 ≈
1

4𝜋
∫ d
4𝜋

𝛀𝐴  
𝛺𝑥
𝑥∗
∫ d
𝜕𝐷𝑖,⊥

𝑆⊥∫ d
𝛥𝑡

−𝛥𝑡

𝑠 𝜓𝑡(𝑠)

≈ ∑𝜔𝑛
𝑛

𝐴 (𝛀𝑛)  
𝛺𝑥,𝑛
𝑥∗

∑𝜔𝑡
⊥

𝑡

 𝑙𝑡⟨𝜓⟩𝑡 .

 

Here, ⟨𝜓⟩𝑡 is the average flux along the chord which can be evaluated using Eq 4.4: 

⟨𝜓⟩𝑡 =
1

𝑙𝑡
∫ d
𝛥𝑡

−𝛥𝑡

𝑠 𝜓𝑡(𝑠) =
𝜓𝑡
𝑖𝑛 − 𝜓𝑡

𝑜𝑢𝑡

𝜏𝑡
+𝒜𝑡 , 
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where the definition of 𝒜𝑡 was used. Therefore, by summing the two terms, we find that 

−𝛥𝐽 𝑥 ≈∑𝜔𝑛
𝑛

𝐴 (𝛀𝑛)∑𝜔𝑡
⊥

𝑡
[
 
 
 
𝑥𝑡
𝑚 − 𝑥𝑐
𝑥∗

(𝜓𝑡
𝑖𝑛 − 𝜓𝑡

𝑜𝑢𝑡) −
𝑙𝑡𝛺𝑥,𝑛
𝑥∗

(
𝜓𝑡
𝑖𝑛 + 𝜓𝑡

𝑜𝑢𝑡

2
− ⟨𝜓⟩𝑡)

⏟              
𝛥𝜓𝑡 ]

 
 
 

. 

The 𝛥𝜓𝑡 is the difference between a sort of flux geometrical average and a physical one 
(i.e., which satisfies the neutron balance) along the chord. It can be written as follows using 
Eq. 4.17: 

𝛥𝜓𝑡 = (
1

2
−
1

𝜏𝑡
)𝜓𝑡

𝑖𝑛 + (
1

2
+
1

𝜏𝑡
)𝜓𝑡

𝑜𝑢𝑡 −𝒜𝑡

= (
1

2
−
1

𝜏𝑡
)𝜓𝑡

𝑖𝑛 + (
1

2
+
1

𝜏𝑡
) [𝜓𝑡

𝑖𝑛(1 − 𝛽0(𝜏𝑡)) + 𝒜𝑡𝛽0(𝜏𝑡) + ℬ𝑡𝜉(𝜏𝑡)] − 𝒜𝑡

= [1 − (
1

2
+
1

𝜏𝑡
)𝛽0(𝜏𝑡)]𝜓𝑡

𝑖𝑛 + [(
1

2
+
1

𝜏𝑡
)𝛽0(𝜏𝑡) − 1]𝒜𝑡 + (

1

2
+
1

𝜏𝑡
) 𝜉(𝜏𝑡)ℬ𝑡

=  𝜉(𝜏𝑡)𝜓𝑡
𝑖𝑛 − 𝜉(𝜏𝑡)𝒜𝑡 + (

1

2
+
1

𝜏𝑡
) 𝜉(𝜏𝑡)ℬ𝑡 ,

 

4.24 

where we used the definitions of 𝜉(𝜏𝑡), 𝒜𝑡, and ℬ𝑡. 

 

 

In practice, the linear streaming term is not assembled chord-by-chord. Instead, we 

rewrite it as 

−𝛥𝐽 𝑥 ≈∑𝜔𝑛
𝑛

𝐴 (𝛀𝑛)∑𝜔𝑡
⊥

𝑡

[
𝑥𝑡
𝑚 − 𝑥𝑐
𝑥∗

(𝜓𝑡
𝑖𝑛 − 𝜓𝑡

𝑜𝑢𝑡)]
⏟                            

−𝛥𝐽 1𝑏
𝑥

−∑𝜔𝑛
𝑛

𝐴 (𝛀𝑛)∑𝜔𝑡
⊥

𝑡

𝑙𝑡𝛺𝑥,𝑛
𝑥∗

𝛥𝜓𝑡
⏟                    

𝛥𝐽 2𝑏
𝑥

 , 

and we note that only 𝛥𝐽 1𝑏
𝑥  contains chord terms that are dependent on 𝑥. Therefore, 𝛥𝐽 2𝑏

𝑥  

can be computed more cheaply by expanding the product 𝐴 𝛺𝑥 in terms of spherical 
harmonics (see [16] for more details): 

𝛥𝐽 2𝑏
𝑥 = −

ℤ𝑥

𝑥∗
𝛥�⃗⃗�  , 

where 𝛥�⃗⃗�  is the array of moments of the angular discrete function ∑ 𝜔𝑡
⊥

𝑡 𝑙𝑡𝛥𝜓𝑡 up to order 
𝑁𝑚
′ = 𝑁𝑚 + 𝐿 + 2, while ℤ𝑥 is the matrix of the coefficients of the linear expansion in terms 

of spherical harmonics Erreur ! Source du renvoi introuvable.. 

To summarize, the linear balance equations can be therefore written as follows: 

�⃗� 𝐶
𝑥 =

1

𝛴
𝔸�⃗� 𝐶

𝑥 −
1

𝛴𝑉
𝛥𝐽 1𝑏

𝑥 −
1

𝛴𝑉

ℤ𝑥

𝑥∗
𝛥�⃗⃗�  ,

�⃗� 𝐶
𝑦

=
1

𝛴
𝔸�⃗� 𝐶

𝑦
−
1

𝛴𝑉
𝛥𝐽 1𝑏

𝑦
−
1

𝛴𝑉

ℤ𝑦

𝑦∗
𝛥�⃗⃗�  .

 

4.25 
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We conclude this theoretical presentation by noticing that both Eqs. 4.21 and 4.25 give 

conservative averages of the flux spatial moments that are coherent with the computed 

currents but that are not numerically coherent with the transmission equation. This matter is 

discussed in detail in [16]. 

 

4.2.6 Enforce conservation in LSxy 

Similarly to what is done in the classic LS scheme, the free parameters 𝛿𝜙1⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝛅𝛟⃗⃗⃗⃗⃗⃗ 𝑥𝑦 must 
be defined in such a way that the LS-𝑥𝑦 scheme is conservative. 

Constant moments 

It must be �⃗� 𝐺
1 = �⃗� 𝐶

1 in all regions, so from Eq. 4.18 it is 

𝛿𝜙1⃗⃗ ⃗⃗ ⃗⃗  ⃗ = �⃗� 𝐶
1 − ∑ 𝕄𝛼

𝛼∈𝜕𝐷𝑖

�⃗� 𝛼 . 

Note that, unsurprisingly, the constant flux correction is very similar to the one found for 
the standard LS scheme. 

Linear moments 

It must be �⃗� 𝐺
𝑥 = �⃗� 𝐶

𝑥 and �⃗� 𝐺
𝑦
= �⃗� 𝐶

𝑦
 in all regions, so from Eq. 4.20 it is 

[
𝛿𝜙𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

𝛿𝜙𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
]  =  [

𝕄𝑉
𝑥,𝑥 𝕄𝑉

𝑥,𝑦

𝕄𝑉
𝑦,𝑥

𝕄𝑉
𝑦,𝑦]

−1

 ([
�⃗� 𝐶
𝑥

�⃗� 𝐶
𝑦]  −∑  

𝛼

[
𝕄𝛼
𝑥�⃗� 𝛼

𝕄𝛼
𝑦
�⃗� 𝛼
]) . 

Note that 𝕄𝑉 does not depend on the iteration index, so it can be inverted (i.e., LU-

factorized) once at initialization and then reused. 

 

4.3 Some selected results 

We validated and benchmarked the newly developed LS-xy method on different test 

cases. While a more extended discussion of the obtained results is given in [16], we limit 

here our presentation to only one significant case.  

The layout of this case is given in Fig. 4.2 and it is a typical 17 by 17 UOX assembly with 

B4C control rods inserted. It is known for being a challenging test case as it characterized 

by strong local flux gradients. We ran for this case a reference Monte Carlo calculation with 

TRIPOLI-4® adopting the CEAV512 nuclear data library (JEFF3.1.1) and obtained a 𝑘𝑒𝑓𝑓 =

0.65359 ± 1.7 pcm (1𝜎). Statistical errors for pinwise one group reaction rates are well below 

1%, and we used in the following these results to benchmark our deterministic calculations.  

Regarding the TDT calculations, we used the 281 groups energy mesh SHEM library 

(based on JEFF3.1.1), an anisotropy order of 3, a number of azimuthal angles equal to 36 

(uniformly distributed), and 5 (Bickley-Naylor) polar angles, with a transversal integration 

step equal to 0.01 cm (quite refined indeed). The rest of computational or material data 

necessary to reproduce these calculations can be found in [16].  

These calculations have been carried out using the AP3-2.2.r17497 revision of the 

APOLLO3® code and the 4.11.1 version of the Monte Carlo TRIPOLI-4s code. 
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Figure 4.2: UOX assembly - Problem domain: UOX fuel pins in green; fuel clads and guide tubes in 

dark gray; B𝟒C control rods in black; and borated water in blue. 

 

Method 
𝚫𝐤/𝐤  

(pcm) 

Max/Min/NRMS 

FISS (%) 

Max/Min/NRMS 

ABS (%) 

SC -366 0.36/-0.26/0.14 0.83/-0.13/0.47 

LS -262 0.18/-0.15/0.07 0.40/0.11/0.29 

LS-xy -207 0.06/-0.10/0.04 0.27/0.12/0.19 
 

Figure 4.3: First set of calculations with a mesh constituted by 3325 computational regions. 

Reference calculation is a TRIPOLI-4® continuous energy calculation. This is a less refined mesh 

necessary to obtain a maximal error for SC inferior to 1%. 

In Fig. 4.3 we reported the mesh (for the fuel and the rod pin) adopted for the first set of 

calculations and a synthetic sketch of the results. This mesh consists of a global number of 

computational regions equal to 3325, and it is the coarsest mesh we found that is able to 

reduce the SC maximal error to less than 1%. Note that even that, with this mesh the error 

on the reactivity remains of 366 pcm, quite larger than those obtained with both the LS and 

(even better) the LS-xy methods. Remark that the required memory for the SC method is 

37Mbytes and the computational time is of 1154 s. 

 

Method 
𝚫𝐤/𝐤  

(pcm) 

Max/Min/NRMS 

FISS (%) 

Max/Min/NRMS 

ABS (%) 

SC -412.1 2.23/-1.33/0.84 1.71/-1.20/0.69 

LS -249.4 0.72/-0.41/0.29 0.80/-0.16/0.29 

LS-xy -192.8 0.06/-0.09/0.04 0.28/0.12/0.17 
 

Figure 4.4: Second set of calculations with a mesh constituted by 1195 computational regions. 

Reference calculation is a TRIPOLI-4® continuous energy calculation. This is a less refined mesh 

necessary to obtain a maximal error for LS inferior to 1%. 
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In a second batch of results we present, we adopted a computational mesh constituted 

by 1195 whose plot is in the Fig. 4.4. This mesh is the coarsest one we found that is able to 

maintain the computational pin-wise maximal error of the LS method lower than 1%. Note 

that the computational time necessary to run this LS calculation is of 3730 s. So quite 

superior to the previous SC one, but the case of Fig. 4.4 still has a lower error on reactivity 

(130pcm better) and a Normalized Root Mean Square (NRMS) error significantly lower (0.29 

against 0.47). 

Finally, we present in Fig. 4.5 a computational mesh of only 565 regions that is well 

adapted to the LS-xy scheme. Note before all that the maximum computational error per pin 

is still well below 1% (equal in fact to 0.33% that is largely better than that of the previous 

optimal meshes for SC and LS methods). Moreover, the error on reactivity is only slightly 

degraded with respect to the reference LS-xy, since we have here an error of only 20 pcm. 

Note also that the memory necessary to this calculation is of 38 Mbytes (so very similar to 

the one of the Fig. 4.3) and the computational time is only of 690 s. 

In conclusion, this case shows very encouraging results since the LS-xy method is able 

to maintain a strong precision even with almost “material” meshes. Looking to an optimal 

choice between costs and precision, it seems a very competitive choice. We think also that 

for all these kinds of studies where the engineers do not seek to optimize computational 

times but need to correctly predict the neutronic behavior of some innovative system, with 

great precision, but would like to reduce the time needed to validate their results, the choice 

of the LS-xy is to be recommended since it does not need to tune aggressively the 

computational mesh as it is the case of the standard SC, or in minor measure of the LS. 

In the next future we plan to implement an acceleration technique to permit the full 

industrial deployment of this new approach. 

  

 

Method 
𝚫𝐤/𝐤  

(pcm) 

Max/Min/NRMS 

FISS (%) 

Max/Min/NRMS 

ABS (%) 

SC -569 5.95/-4.25/2.75 4.84/-3.24/1.53 

LS -190 1.79/-1.17/0.78 1.67/-0.79/0.43 

LS-xy -223 0.10/-0.15/0.06 0.33/0.13/0.23 
 

Figure 4.5: Second set of calculations with a mesh constituted by 565 computational regions. 

Reference calculation is a TRIPOLI-4® continuous energy calculation. This is a less refined mesh 

necessary to obtain a maximal error for LS-xy inferior to 1%. 
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5 Conclusions 

In Task 4.4 of the CAMIVVER project, we have developed new computational methods 

and implemented advanced modeling using the lattice part of the APOLLO3® code. 

The first subject we have faced is the improvement of the axial reflector modeling along 

depletion. This item demands the development of a 3D computational method to correctly 

represent the flux in the case of interest. To follow the behavior of the nuclide density during 

depletion, we have enhanced the previously developed polynomial flux method to include 

also the spatial variation of the cross sections [5]. Since the depletion calculation is 

organized as a coupling between different methods (i.e., the self-shielding and the depletion 

with the flux calculation) we have organized a framework to exchange the information 

between the “polynomial” MOC solver and the “Step-based” basic APOLLO3® functionalities 

(in particular self-shielding and depletion). Here, we have shown that, in spite of a supposed 

“step-wise” representation, a Gaussian representation can be used to optimally exchange. 

Moreover, we have established a method to validate our approach against Monte-Carlo 

calculation during depletion. We have in fact avoided to perform Monte-Carlo depletion 

calculations due to excessive computational costs. We have therefore preferred to use the 

APOLLO3® function called Triage to “translate” the set of nuclide concentrations at each 

burnup step and then verify the coherence between the Monte-Carlo calculation and the 

deterministic one. Nevertheless, we still have had to manage the fact that at every depletion 

snapshot the deterministic Gaussian mesh cannot be directly translate for the TRIPOLI-4® 

calculation. Therefore, a new tool to build an optimal Step Equivalent Mesh (SEM) has been 

conceived. We have then run a complete validation scenario. Our results are encouraging 

even if some discrepancies are still to be analyzed and resolved. In particular, our SEM is 

certainly too large and demands to be tuned. This setup will be addressed in next future. 

Another important topic we have addressed in this task, is to build some advanced 

reflector models in order to analyze some approximations of classical schemes. Therefore, 

after having established a referential APOLLO3® calculation of the KAIST-derived 

benchmark with curve reflector and tested it against TRIPOLI-4® calculations, we have 

quantified the errors that affect some of the typical approaches in the computational model 

of the reflector. In particular, we have examined the weight of the smearing of water holes 

into a homogeneous reflector medium, the geometrical deformation of the correct reflector 

model into a segmented Cartesian or the use of enhanced self-shielded models. Our 

conclusion is that, even if these approximations do not entail strong errors in the global 

reactivity, they cause important local errors (up to 4%) in pin-by-pin reaction rates at the 

interface between the core and the reflector. We suggest therefore the improvement of 

classical models by using local equivalence techniques (like discontinuity factors based on 

peripheral cluster calculation as it is done in literature) or by a strong improvement of the 

geometrical model. This last possibility has of course as a consequence to accept a higher 

computational cost. We remark also that using the LS scheme in the APOLLO3® MOC solver 

has been the only operative option to assess our reference calculation. This has permitted 

us to eliminate the lack of spatial convergence in the computational mesh that we otherwise 

had with the standard SC scheme. 

Finally, the last subject we have tackled is the development of an enhanced numerical 

scheme for neutron transport. The goal of this sub-task was to improve the pre-existing LS 
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scheme to allow using even coarser computational meshes. This could be profitable for 

industrial applications for two main reasons. On one side, we expect the new scheme to be 

faster (for a given precision) of the previous LS one. On the other hand, higher order 

schemes are largely easier to handle to the users since they permit to obtain converged 

results without the need to do tedious convergence studies. This new scheme inserts into 

the previous LS one the concept of interpolating not only by conserving surface quantities 

but also volume-based ones. We have largely compared this method to the LS and the SC 

schemes in a rodded assembly case test and our tests show the large superiority of this new 

scheme with respect to the already available ones. To complete the development and allow 

to use it in industrial applications, we still need to implement an acceleration scheme. Thing 

that we plan to do in the next future.  
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7 Appendix A: Contribution to KAIST-like core preliminary 

analyses using newly developed Python libraries for 

automatize ALAMOS use 

To improve the model used for reflectors in preparation to the CAMIVVER follow-up 

project, several activities were carried out at Framatome using the tools and the approaches 

implemented in CAMIVVER WP4 and WP5. 

Two internships’ projects started in 2023 aiming at automatizing the creation of 

geometries for lattice calculations based on the ALAMOS tool [11] using Python libraries. 

The outcomes of these works may be used to support reference studies (R&D actions in 

Framatome) and to produce advanced geometry configurations (2D reflectors vs. typical 1D 

models) to generate improved cross-section data for core calculations. 

The two internships’ projects focus on the development of different Python libraries 

wrapping the ALAMOS tool to: 

1. generate PWR Cartesian unstructured Fuel Assembly (FA) geometries. The idea is 

to produce, as for the VVER cases, external geometries for PWR FA to be used in 

the NEMESI environment (work done by Mathieu Robin in collaboration with 

Université de Grenoble – PHELMA - France).  

2. generate PWR and VVER unstructured reflectors (mainly radial) geometries as first 

step to prepare improved reflector cross-sections to be used at core level and feeding 

reference 2D calculations (work done by Fabio Inzirillo in collaboration with 

Politecnico di Milano - Italy and Polytechnique Montreal - Canada). 

In this appendix, only few elements concerning these works are presented to open the 

discussion in preparation of the CAMIVVER project follow-up. The activities are still ongoing. 

In both activities, the choice of developing high-level Python based libraries, to generate 

unstructured geometries (Cartesian and Hexagonal assembly and reflectors geometries), 

were carried out by considering since the beginning several needs, such as 

• automatization to produce all geometry types in the framework of the development 

and extension of the multiparameter platform (NEMESI), 

• applications to improve existing modeling (e.g., for reflectors going from 1D to 2D) 

and support V&V actions (e.g., via the setup of 2D reference core calculations for the 

different reactor types). 

To achieve these goals, considerations over the architectural choice and the User 

Interface were considered and several generic classes were created as shown, for instance, 

in Figure A.2 for the assembly and reflector parts, respectively. 
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Example Class used for the assembly part 
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Example Class used for the reflector part 

Figure A.2: Example classes organization (Activity still ongoing) 

 

The Python libraries developed during the internships allowed to start the automatization 

of the generation of the PWR assembly geometry (i.e., the ones composing the KAIST core, 

see Figure A.3) and for any type of reflector geometries. 

 

Figure A.3: KAIST FA TYPES 

 

In order to create a full core model, the two Python libraries were combined and a first 

application to the KAIST-like core described in [12] was performed as indicated in the 

example shown in Figure A.4. 

 

  

Figure A.4: Example KAIST-like core generated with Python library – ongoing work. 
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Preliminary results obtained are encouraging. A comparison with the results described 

in Section 0 is provided in Figure A.5. 

 

Reflector model from Section 0 Reflector model developed with the 

automatic library 

  

Zoom on reflector – different meshes are possible 

  

Multiplication factor  

1.13271 1.13249 

Flux distribution 

  

Figure A.5: Kaist-like preliminary results 
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8 APPENDIX B – Validation MOC3D: pin by pin reaction rates 

            

Here, we put all 2D plots with the pin by pin distribution of reaction rates: for both fission 

and capture, for all BU steps and all layers (except the non-fissile layers where the fission 

rates are absent of course).  

 

12.1 Burnup = 0 MWd/t 

 

Figure B.1: Layer 1 comparison with TRIPOLI-4® for the capture rate 

 

  

Figure B.2: Layer 2 comparison with TRIPOLI-4® for the capture rate 

 

  

Figure B.3: Layer 3 comparison with TRIPOLI-4® for the capture rate 
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Figure B.4: Layer 4 comparison with TRIPOLI-4® for the capture rate 

  

Figure B.5: Layer 5 comparison with TRIPOLI-4® for the capture rate 

  

Figure B.6: Layer 6 comparison with TRIPOLI-4® for the capture rate 

  

Figure B.7: Layer 7 comparison with TRIPOLI-4® for the capture rate 
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Figure B.8: Layer 8 comparison with TRIPOLI-4® for the capture rate 

 

 

 

Figure B.9: Layer 9 comparison with TRIPOLI-4® for the capture rate 

 

Figure B.10: Layer 3 comparison with TRIPOLI-4® for the fission rate 

 

 

Figure B.11: Layer 4 comparison with TRIPOLI-4® for the fission rate 
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Figure B.12: Layer 5 comparison with TRIPOLI-4® for the fission rate 

 

 

Figure B.13: Layer 6 comparison with TRIPOLI-4® for the fission rate 

 

 

Figure B.14: Layer 7 comparison with TRIPOLI-4® for the fission rate 

 

 

Figure B.15: Layer 8 comparison with TRIPOLI-4® for the fission rate 
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Figure B.16: Layer 9 comparison with TRIPOLI-4® for the fission rate 

 

12.2 Burnup = 60 GWd/t 

  

Figure B.17: Layer 1 comparison with TRIPOLI-4® for the capture rate 

  

Figure B.18: Layer 2 comparison with TRIPOLI-4® for the capture rate 

 

 

 

Figure B.19: Layer 3 comparison with TRIPOLI-4® for the capture rate 
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Figure B.20: Layer 4 comparison with TRIPOLI-4® for the capture rate 

  

Figure B.21: Layer 5 comparison with TRIPOLI-4® for the capture rate 

  

Figure B.22: Layer 6 comparison with TRIPOLI-4® for the capture rate 
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Figure B.23: Layer 7 comparison with TRIPOLI-4® for the capture rate 

 

Figure B.24: Layer 8 comparison with TRIPOLI-4® for the capture rate 

 

 

Figure B.25: Layer 9 comparison with TRIPOLI-4® for the capture rate 

 



CAMIVVER – 945081 – D4.6 - issued on 31/08/2023 

Page 72/73 

 

Figure B.26 : Layer 3 comparison with TRIPOLI-4® for the fission rate 

 

Figure B.27: Layer 4 comparison with TRIPOLI-4® for the fission rate 

 

 

Figure B.28: Layer 5 comparison with TRIPOLI-4® for the fission rate 
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Figure B.29: Layer 6 comparison with TRIPOLI-4® for the fission rate 

  

Figure B.30: Layer 7 comparison with TRIPOLI-4® for the fission rate 

 

Figure B.31: Layer 8 comparison with TRIPOLI-4® for the fission rate 

  

 

Figure B.32: Layer 9 comparison with TRIPOLI-4® for the fission rate 

 

 


