
 

 
 

This project has received funding from the Euratom research and training programme  
2019-2020 under grant agreement No 945081. 

 

 

 

 

 

 

 

 

Codes And Methods Improvements 

for VVER comprehensive safety assessment 

 

 

 

 

 

Grant Agreement Number: 945081 

Start date: 01/09/2020 - Duration: 36 Months 

 

 

WP6 - Task 6.3 

D6.3 – Uncertainties propagation on Kozloduy-6 CFD 

simulation through Deterministic Sampling method  
V. Sanchez, M. Böttcher (KIT) 

V. Khayiguian, A. Mas, O. Bernard (FRA),  

R. Nop (CEA), 

 D. Ruban, A. Hashymov, O. Sevbo (ER), 

N. Forgione, O. Halim, A. Pucciarelli (UNIPI) 

 

 

  Version 1 – 28/09/2023 

 

CAMIVVER – Grant Agreement Number: 945081 



CAMIVVER – 945081 – D6.3 - version 1 issued on 28/09/2023 

Page 2/72 

 

Document title 
Uncertainties propagation on Kozloduy-6 CFD simulation through 

Deterministic Sampling method 

Author(s) Viken KHAYIGUIAN 

Document type Deliverable 

Work Package WP6 

Document number D6.3 

Issued by FRAMATOME 

Date of completion 28/09/2023 

Dissemination level Public 

Summary 

This deliverable describes the analysis of the uncertainty propagation performed with 

deterministic sampling through the computation of the Coolant Mixing Test at the Kozloduy 

Unit 6 Nuclear Power plant. The computations were performed using different CFD-models 

built by different partners with different softwares which are described in deliverables D6.1 

and D6.2. 

In the first part, the objectives and context are introduced. In the second part, deterministic 

sampling (DS) used to propagate uncertainty and the Proper Orthogonal Decomposition 

(POD) are introduced. In the third part the quantities of interest described in this document 

and the data processing are described. Then in the fourth part, the results of the uncertainty 

quantification are detailed.  

The objective of this study is to perform an uncertainty propagation to verify the consistency 

and sensitivity of CFD results to the software, model and propagation method chosen. This 

has been done by testing different turbulence models, with different softwares and by using 

different deterministic ensembles for propagating uncertainties. For this, four input 

parameters were set as uncertain and their statistical moments were propagated through 

CFD computations with different DS ensembles. In conclusion of this study, the assessment 

of the sensitivity and uncertainty statistical moments with DS and POD enabled to illustrate 

the effect of inputs on computations of the mixing coefficients and temperature in the core.  

Deterministic sampling was found to yield consistent results between partners and 

ensembles with amplitudes that were found to stay moderate. The importance of evaluating 

simultaneous variations of parameters and the effect of evaluating the CFD responses on 

ensembles with increasing complexity was highlighted, thus, ensembles that should be 

preferred to evaluate the CFD response statistical moments were put forward. In terms of 

model sensitivity, two kinds of behaviour were observed: models which tend to smoothen 

the time fluctuations of signals, and models which do not which presented higher variance. 

On these latter ones, the combined effect of meshing, numerical scheme and turbulence 

modelling should be investigated further to increase our understanding of their impact on 

the unsteadiness of the resulting simulations. 

In conclusion, the important result of this study is the consistency of the results between the 

partners regarding the quantities of interest and their uncertainty which are very close one 

model from another, increasing the confidence in the modelling of a VVER vessel for mixing 

simulations with CFD codes. 
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1. Introduction 

The purpose of deliverable D6.3 is to present the work performed by the partners involved in WP6.3 

of the H2020 CAMIVVER project [1]. Previous work has been done by the different partners in tasks 

6.1 and 6.2 to elaborate a CFD model of a Nuclear Power Plant (NPP) of VVER-design located in 

Kozloduy, Bulgaria. Steady state simulations at nominal power were performed followed by transient 

simulations reproducing the Kozloduy-6 Mixing Experiment. The results and conclusion of these two 

tasks can be found respectively in the deliverables D6.1 [2] and D6.2 [3]. The purpose of this task is 

to go a step further and assess the uncertainty on the CFD results. In fact, when performing CFD 

simulations, uncertainties on the results can arise at different steps of the case setup and have to 

be taken into account when compared to experimental data or when utilizing the results for safety 

and design. In the nuclear industry, guidelines provided by the ASME in reference [4] are used for 

the assessment of simulation errors and uncertainties. In this work, only one source of uncertainty 

is considered, namely, the uncertainty on the simulation inputs denoted 𝑈𝑖𝑛𝑝𝑢𝑡𝑠 which is the 

uncertainty induced by taking into account the inputs uncertainty in the CFD computations. Thus, 

this task does not aim to make a comprehensive uncertainty quantification study but only to focus 

on the propagation of the inputs’ uncertainty. The objectives of this study are at the same time the 

assessment of statistical moments and quantiles of 𝑈𝑖𝑛𝑝𝑢𝑡𝑠 of different quantities of interest and 

providing a reliable methodology for it. A realization of the random variable (RV) 𝑈𝑖𝑛𝑝𝑢𝑡𝑠 is denoted 

𝛿𝑈𝑖𝑛𝑝𝑢𝑡𝑠 and can be written: 

𝛿𝑈𝑖𝑛𝑝𝑢𝑡𝑠 = 𝑓𝐶𝐹𝐷(𝝁𝑿) − 𝛿𝑓𝐶𝐹𝐷(𝜹𝑿) 

Where 𝑓𝐶𝐹𝐷(𝝁𝑿) is the output of CFD when considering determined inputs which are taken at their 

mean values 𝝁𝑿 and 𝛿𝑓𝐶𝐹𝐷(𝜹𝑿) is a realization of 𝑓𝐶𝐹𝐷 evaluated from a realization of the uncertain 

Random Variable (RV) 𝑿 denoted 𝜹𝑿. The assessment of this RV enables the evaluation of the bias 

and standard deviation of the CFD results when considering or not the inputs uncertainty. Different 

approaches to propagate inputs statistical moments or quantiles can be found in literature 

(Polynomial Chaos expansion, Monte-Carlo draws on surrogate model …), and are reviewed for 

instance in [5] [6] [7]. The method used in this document to propagate the inputs uncertainty through 

CFD simulation is Deterministic Sampling (DS) which is detailed in references [8] and [9]. This 

method has been chosen for its significantly lower number of requested simulations for the 

assessment of the uncertainty. Once the statistical moments are propagated, different assumptions 

will be made on the output distribution using a distribution model, namely the Metalog distribution 

[10], to evaluate quantiles. 

For this application on the Kozloduy 6 mixing experiment, four boundary conditions of the model 

indicated on Table 1 are set as uncertain. These parameters were chosen by the different partners 

because of their impact on the CFD outputs which have been deemed to be important in front of 

others. 

Table 1: List of uncertain parameters for Kozloduy-6 mixing parameters 

Inlet uncertain parameter 𝝁 𝝈 

𝑋1 = Δ𝑄1: uncertainty of leg 1 inlet flowrate variation 0 91.32 kg/s  

X2 = Δ𝑇2: uncertainty of leg 2 inlet temperature variations 0 1 °C 

X3 = Δ𝑇1: uncertainty of leg 1 inlet temperature variations 0 1 °C 

X4 =  Δ𝑃𝑐𝑜𝑟𝑒: uncertainty on core total power variations 0 60MW 

 

The uncertain parameters are all set to a zero mean and are added to the baseline value of the 

transient. It should be noted that Δ𝑄1, Δ𝑇2, Δ𝑇1 and ΔPcore are added as a constant on the time 
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evolving signals 𝑄1, 𝑇2, 𝑇1 and 𝑃𝑐𝑜𝑟𝑒 as we assume that Δ𝑋 (𝑋 being the parameter of interest) is a 

systematic bias during the transient and does not evolve in time.  

2. Numerical methods for uncertainty quantification 

2.1. Covariance propagation using deterministic sampling 

2.1.1. Principle of the method  

The methodology used to propagate uncertainties with DS is based on references [8] and [9]. 

Propagating uncertainties with DS is similar to propagating uncertainties with Random Sampling 

(RS). In fact, both methods first rely on the representation of a random variable (RV) with a finite 

sample: 

- RS: the sample is drawn randomly, the representativity of the sample regarding the real RV 

gets better as the size of the sample increases. The representation error is directly connected 

to the sampling which should include an important number of samples (at least 1000) to reach 

an acceptable representativity of the RV.  

- DS: the sample is drawn by applying deterministic rule. The rule suggested in reference [8] 

is the conservation of statistical moments. As for RS, an increasing number of samples will 

allow the representation of an increasing number of statistical moments and thus enhance 

the representation of the RV.  

Both RS and DS methods have their advantages, which are respectively an exact convergence 

toward a given probability density function insured by the Central Limit Theorem for RS and a quick 

but approximate convergence for DS. When the sample representing the random inputs is chosen, 

the propagation through CFD is done in a non-intrusive way by evaluating each set of inputs of the 

sample with a computation. The statistics of the outputs are then assessed from the output sample.  

2.1.2. Encoding statistical moments with deterministic sampling 

Throughout the rest of this document, the deterministic samples which form the design of experiment 

of the study will be named ensembles. DS ensembles are provided as a pair with a weight vector. 

The nomenclature is the following for a RV 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑝) of dimension 𝑝, encoded by an 

ensemble of size 𝑁: 

𝑾 = (

𝑤1
⋮
𝑤𝑁
) is the weight vector, 𝚺 = (�̃�𝒊)𝑖≤𝑝 = (

�̃�1
(1)

… �̃�𝑝
(1)

⋮ ⋱ ⋮

 �̃�1
(𝑁)

… �̃�𝑝
(𝑁)
) is the ensemble.  

The number of columns of the ensemble is the number of parameters, and the number of lines is the 

number of chosen samples of the ensemble. Each line of the sample is called a sigma point. The 

weights are sought such as: 

 ∑𝑤𝑘

𝑁

𝑘=1

= 1 (2-1) 

This condition is sought to have an unbiased estimator of the statistical moments. The deterministic 

rule followed to choose an ensemble is the conservation of statistical moments. The first statistical 

moment is the mean value that can be calculated for all parameters 𝑋𝑖 as follows from the ensemble 

and weights: 



CAMIVVER – 945081 – D6.3 - version 1 issued on 28/09/2023 

Page 11/72 

 〈𝑋𝑖〉 = ∑𝑤𝑘�̃�𝑖
(𝑘)

𝑁

𝑘=1

 (2-2) 

The marginal moment of order 𝑚 of parameter 𝑋𝑖 is evaluated from a DS ensemble with the following 

formula:  

 〈𝛿𝑋𝑖
𝑚〉 = ∑𝑤𝑘(�̃�𝑖

(𝑘) − 〈𝑋𝑖〉)
𝑚

𝑁

𝑘=1

 (2-3) 

The four first moments are respectively the mean value, the variance, the skewness and the kurtosis.  

In addition, the mixed moment of order 𝑚 = 𝑚𝑖 +𝑚𝑗 +⋯+𝑚𝑙 of the RV 〈𝛿𝑋𝑖
𝑚𝑖𝛿𝑋

𝑗

𝑚𝑗
. . 𝛿𝑋𝑙

𝑚𝑙〉 is 

calculated as follows: 

 〈𝛿𝑋𝑖
𝑚𝑖  𝛿𝑋

𝑗

𝑚𝑗 . . 𝛿𝑋𝑙
𝑚𝑙〉 = ∑𝑤𝑘(�̃�𝑖

(𝑘) − 〈𝑋𝑖〉)
𝑚𝑖
(�̃�𝑗

(𝑘) − 〈𝑋𝑗〉)
𝑚𝑗
… (�̃�𝑙

(𝑘) − 〈𝑋𝑙〉)
𝑚𝑙

𝑁

𝑘=1

 (2-4) 

If a DS ensemble which conserves chosen statistical moments is sought, a non-linear system of 

equation has to be formed from equations (2-1), (2-2), (2-3) and (2-4) for the chosen ensemble. This 

system can be written: 

 𝑡𝑾𝑺 = 𝑴 (2-5) 

Where 𝑾 is the weights vector, 𝑺 is a matrix where are concatenated columns corresponding to the 

𝟏 = (1)1≤𝑖≤𝑁 vector encoding (2-1) equation, and columns corresponding to the encryption of the 

different chosen statistical moment (mixed or marginal moment) obtained from equations (2-2), (2-3) 

and (2-4).  

For instance, to encode only the mean value and the standard deviation for the 𝑝 parameters 𝑋𝑖, the 

ensemble and weights 𝚺 = (�̃�𝒊)𝑖≤𝑁 and 𝑾 = (𝑤1, … , 𝑤𝑁) must be solutions of the system (2-5) with 

𝑺 written as following: 

𝑺 =

(

 
 
 
 
 
 
1 �̃�1

(1)
�̃�2
(1)

… �̃�𝑝
(1)

(�̃�1
(1)
− 〈𝑋1〉)

2
… (�̃�𝑝

(1)
− 〈𝑋𝑝〉)

2

1 �̃�1
(2)

�̃�2
(2)

… �̃�𝑝
(2)

(�̃�1
(2)
− 〈𝑋1〉)

2
… (�̃�𝑝

(2)
− 〈𝑋𝑝〉)

2

1 �̃�1
(3)

�̃�2
(3)

… �̃�𝑝
(3)

(�̃�1
(3)
− 〈𝑋1〉)

2
… (�̃�𝑝

(3)
− 〈𝑋𝑝〉)

2

⋮ ⋮ ⋮ … ⋮ ⋮ … ⋮

1 �̃�1
(𝑁)

�̃�2
(𝑁)

… �̃�𝑝
(𝑁)

(�̃�1
(𝑁)

− 〈𝑋1〉)
2

… (�̃�𝑝
(𝑁)

− 〈𝑋𝑝〉)
2

)

 
 
 
 
 
 

, and 𝑴 =

(

 
 
 
 
 
 

1
〈𝑋1〉

〈𝑋2〉
⋮

〈𝑋𝑝〉

〈𝛿𝑋1
2〉
⋮

〈𝛿𝑋𝑝
2〉)

 
 
 
 
 
 

 

If marginal moments up to order 𝑚 must be encoded, the number of equations that must be solved 

is 𝑝 × 𝑚 + 1. This has an impact on the number of elements 𝑁 of the sample that must be used to 

have a solution to the system. When mixed moments are added, the dimension of the system 

increases steeply. In the following section, the methodology used to choose an ensemble 

representing a given random variable will be detailed. 

2.1.3. Propagation of statistical moments 

The previous system (2-5) given to choose the ensemble 𝚺 = (�̃�𝒊)𝑖≤𝑁 and the weight vector 𝑾 =

(𝑤𝑖)𝑖≤𝑁 is non-linear which complicates its resolution and the exhibition of solutions. The approach 

used in this work and detailed in [9] to solve this system is to use a pertinent ensemble 𝚺 which is 

fixed as a constraint and the weights 𝑾 are chosen by solving the linear system for the weights 𝑤𝑖. 

The good representation of the RV relies on a good choice of the ensemble 𝚺 which should present 

a good structure in terms of combinations of parameters, and which should lead to acceptable 
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weights in term of values (low discrepancy between values and no negative values). The 

methodology to build ensembles relies on elementary bricks: 

- activation matrices which present specific properties (symmetry, structure) 

- elementary operations which are methods to combine the ensembles.  

Elements on the methodology can be found with more details in Appendix A. For this application of 

the Kozloduy-6 mixing experiment, four parameters are set as uncertain. In addition, we assume that 

the 4D RV 𝑿 = (𝑋1, 𝑋2, 𝑋3, 𝑋4) follows a 4D gaussian distribution: 

𝑿 ↪ 𝒩(𝝁𝑿, 𝐂) 

𝝁𝑿 = (𝜇1, 𝜇2, 𝜇3, 𝜇4), 𝐂 =

(

 
 

𝜎1
2 0 0 0

0 𝜎2
2 0 0

0 0 𝜎3
2 0

0 0 0 𝜎4
2

 

)

 
 

 

 

Where, 𝝁𝑿 is the mean realization of the RV 𝑿 and 𝐂 is the covariance matrix. This specific 

covariance matrix implies that the different 1D random variables 𝑋1, 𝑋2, 𝑋3 and 𝑋4 are independent 

which is an assumption of this study. The terms 𝜎1, 𝜎2, 𝜎3 and 𝜎4 are the standard deviations assumed 

of the four parameters. 

Two basic ensembles with equal weights are used for propagation in this document: 

- The Standard matrix named Σ𝑆𝑇𝐷 which originates form the Unscented Kahlman Filtering 

context for covariance propagation (see [11]).  

- The Hadamard matrix named Σ𝐻𝐴𝐷 which shows some similarities to the binary matrix of 

reference [8]. 

 

𝜮𝑺𝑻𝑫 = 2

(

 
 
 
 
 

𝜎1
−𝜎1
0
0
0
0
0
0

0
0
𝜎2
−𝜎2
0
0
0
0

0
0
0
0
𝜎3
−𝜎3
0
0

0
0
0
0
0
0
𝜎4
−𝜎4)

 
 
 
 
 

,𝜮𝑯𝑨𝑫 =

(

 
 
 
 
 

𝜎1
−𝜎1
𝜎1
−𝜎1
𝜎1
−𝜎1
𝜎1
−𝜎1

𝜎2
𝜎2
−𝜎2
−𝜎2
𝜎2
𝜎2
−𝜎2
−𝜎2

𝜎3
−𝜎3
−𝜎3
𝜎3
𝜎3
−𝜎3
−𝜎3
𝜎3

𝜎4
𝜎4
𝜎4
𝜎4
−𝜎4
−𝜎4
−𝜎4
−𝜎4)

 
 
 
 
 

 

 

In addition, these ensembles were combined to enforce additional statistical moments: 

- The Gauss Heavy Middle ensemble Σ𝐺𝐻𝑀 which adds the mean central point into the 

Hadamard matrix to enforce a 4th marginal moment 〈𝛿4𝑋𝑗〉 = 3. Elements on the addition of 

the 𝟎 vector and the modification of the weights can be found in reference [9]. 

- A hybrid ensemble Σ𝐾𝑅𝑇 which concatenates the Standard ensemble and Hadamard 

ensemble and enables to enforce additional mixed moments of order 4 (〈𝛿𝑋𝑖
2𝛿𝑋𝑗

2〉 = 1). This 

ensemble is declined in two versions. 

 

𝚺𝑮𝑯𝑴 = (
0

√3 ∙ 𝜮𝑯𝑨𝑫
) , 𝜮𝑲𝑹𝑻,𝟏 = (

√2 ∙ 𝜮𝑯𝑨𝑫
0

𝜮𝑺𝑻𝑫

) , 𝜮𝑲𝑹𝑻,𝟐 = (
√3 ∙ 𝜮𝑯𝑨𝑫

√3 ∙ 𝚺𝑺𝑻𝑫
) 

 



CAMIVVER – 945081 – D6.3 - version 1 issued on 28/09/2023 

Page 13/72 

It should nevertheless be noted that these ensembles are based on Hadamard ensemble which does 

not induce a total independence between parameters. In fact, 〈𝛿𝑋1𝛿𝑋2𝛿𝑋3〉 ≠ 0 which is expected 

for totally independent variables. 

A summary of the enforced moments for the different ensembles is given on Table 2. It should be 

noted that the residuals giving the aimed moment and the enforced moment should be indicated in 

order to quantify how far the DS ensemble chosen is from the aimed RV. In this document this has 

not been done. 

Table 2: List of enforced statistical moment for a 4D gaussian RV with the different 

ensembles 

    Marginal moments Mixed moments 

Ensemble 𝑁Σ 𝑀𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙
(2)

 𝑀𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙
(3)

 𝑀𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙
(4)

 𝑀𝑚𝑖𝑥𝑒𝑑
(2)

 𝑀𝑚𝑖𝑥𝑒𝑑
(3)

 𝑀𝑚𝑖𝑥𝑒𝑑
(4)

 

Standard 8 4/4 4/4 0/4 6/6 16/16 25/31 

Hadamard 8 4/4 4/4 0/4 6/6 15/16 31/31 

Gauss Heavy middle 9 4/4 4/4 4/4 6/6 15/16 25/31 

Hybrid “KRT” 1 and 2 17 4/4 4/4 4/4 6/6 15/16 31/31 

2.2. Proper Orthogonal decomposition 

POD (Proper Orthogonal Decomposition) aims to generate a modal decomposition of functions 

based on observations. This technique is used in a wide range of domains and is known under 

different names: 

- Karhun-Loève Transform (KLT) in pattern recognition [12] 

- Principal Components Analysis (PCA) in statistical literature (for example [13]).  

- Proper Orthogonal Decomposition (POD) in mechanical engineering [14]. 

The use of POD in fluid mechanics answers to one problematic faced when studying the motion of 

turbulent flow, which is the reduction of the turbulent motion to a limited number of parameters. The 

use of POD in fluid mechanics for the study of turbulence is now widely spread and an early review 

can be found in [15] while the mathematical aspects of this decomposition can be found in an 

educational way in references [16] [17].  

The use of POD in fluid mechanics is not restricted to the study of turbulence and has spread to 

other connected fields. For instance, in the uncertainty quantification of CFD codes context, methods 

based on POD are used for instance in [18] [19] for their ability to reduce the outputs dimension.  

In this document, POD is used specifically for its ability to reduce the output dimension and to capture 

spatial correlations between fluctuations. The work presented in this document is based on the 

Snapshot method given in [12]. In this document, POD is used to study the variability of 2D fields 

(𝑓𝐶𝐹𝐷(𝑥, 𝑦, 𝑿𝒊))𝑖≤𝑁𝑆𝑁𝐴𝑃
 where 𝑿𝒊 = (𝑋1, 𝑋2, 𝑋3, 𝑋4)𝑖 is the set of inputs for a simulation 𝑖. In practice, 

𝑁𝑆𝑁𝐴𝑃 realizations of 𝑓𝐶𝐹𝐷 are available and enable the calculations of POD modes (𝜙𝑘)𝑘≤𝑁𝑃𝑂𝐷 and 

eigenvalues (𝜆𝑘)𝑘≤𝑁𝑃𝑂𝐷which are found by solving an eigenvalue problem. These modes can then 

be used to express the snapshots 𝑓𝐶𝐹𝐷 as follows: 

𝑓𝐶𝐹𝐷(𝑥, 𝑦, 𝑿𝒊) = ∑𝑎𝑘(𝑿𝒊)𝜙(𝑥, 𝑦)

𝑟

𝑘=1

+ 𝜖𝑟 

With 𝜖𝑟 the truncation error of the POD of order 𝑟, and 𝑎𝑘 components that can be calculated for 

each snapshot with the following formula:  
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𝑎𝑘(𝑿𝒊) = ∬ 𝑓𝐶𝐹𝐷(𝑥, 𝑦)𝜙(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑆

 

In the present application, the spatial dimension is discretized which simplifies the calculation of the 

integral. 

Regarding the truncation error 𝜖𝑟, its amplitude converges to zero when the order 𝑟 gets closer to 

𝑁𝑃𝑂𝐷. In addition, the POD base presents the advantage of classifying the different modes by order 

of importance. In fact, the POD is built by satisfying an optimality criterion, the POD provides a 

reduced dimension subspace of the input vectors on which the error between the projection and the 

original vector is minimized (see for instance reference [17]). The consequence is that most of the 

time, the number of modes that can be chosen is much smaller than the dimensionality of the original 

input as spatial correlations are detected between the fields. A way to choose the number of modes 

is to look the Relative Information Content (RIC) number which is defined as following from the 

eigenvalues of the POD base: 

 𝑅𝐼𝐶(𝑖) =
(∑ 𝜆𝑖

𝑖
𝑘=1 )

∑ 𝜆𝑖
𝑁𝑃𝑂𝐷
𝑘=1

 (2-6) 

In practice, the truncation order 𝑟 is chosen such as 𝑅𝐼𝐶(𝑟) > 0.99. If this constraint is not sufficient 

to have a negligible truncation error 𝜖𝑟 additional modes can be kept.   

3. Data processing 

3.1. Quantities of interest 

a) 𝑇𝐻𝐿,1(𝑡) 

 

b) 𝑇𝐹𝐴,𝑜(𝑖) 

 

c) 𝐶1(𝑖) 

 

d) 𝐶2(𝑖) 

 

Figure 1 : examples of postprocessed fields from a CFD simulation 

The quantities of interest for the uncertainty quantification study presented in this document are: 
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- The increase of temperature in the hot leg 1 during the transient THL,1(𝑡). An example is given 

on Figure 1a.  

- The core outlet temperature: a map of the fuel assemblies’ (FA) outlet temperature is 

extracted 𝑇𝐹𝐴,𝑜(𝑖) with 𝑖 being the index of the FA. A view of 𝑇𝐹𝐴,𝑜(𝑖) is given on Figure 1b. 

- The mixing map of the core constructed with 4 passive scalar fields injected respectively in 

the four cold legs of the circuit. The four mixing coefficient fields in the core are denoted with 

the symbol 𝐶𝑚𝑖𝑥,𝑗(𝑖) where 𝑗 is the index of the cold leg of interest and 𝑖 the index of the FA 

of interest. 𝐶1(𝑖) and 𝐶2(𝑖) are given respectively on Figure 1c and Figure 1d. 

3.2. Filtering of the signal 

The data presented in the previous paragraph is processed to highlight variations on the results of 

the different computations due to the variations of input parameters. Some of the data that are 

processed in this work are time evolving signals which can present some important time fluctuations. 

The combination of the variability between signals and of the time fluctuations can be of two types: 

- Variability between signals with small time fluctuations.  

- Variability between signals with large time fluctuations. 

Examples of these two types of variability are depicted on Figure 2. These two kinds of variability 

are both important to make confidence intervals. If we look for instance to signals which show 

correlated time fluctuations as it can be seen Figure 2a, the amplitude of the time fluctuations will 

have small impact on the calculation of the discrepancy between signals. On the other side, if time 

fluctuations are uncorrelated, as it can be seen Figure 2b for some of the signals, the impact on the 

evaluated uncertainty can be important if the amplitudes are high. In fact, if the amplitude of the time 

fluctuations is bigger than the discrepancy between the signals, the resulting variance will be mostly 

due to the time fluctuations which will hide the correlation between the CFD output variation with 

respect to the inputs’ variations. In this work, a filtering of the signal is performed with POD by 

truncating the signals with a limited number of modes to study whether it brings out correlation of the 

output to the inputs.  

a) Time correlated variability between 

computations 

 

b) Uncorrelated variability between 

computations 

 

Figure 2 : examples of evolution of 𝑻𝑯𝑳,𝟏 on the last 200s of the transient simulation with 

two models. The red line corresponds to the reference calculation while blue and black 

curves correspond to simulation evaluated with different DS ensembles.  
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The filtering of the signals is illustrated on Figure 3. The filtering of the snapshots (𝑇𝐻𝐿,1(𝑡𝑖 , 𝑿𝒋))
𝑗≤𝑁Σ

 

is obtained by applying the truncated POD of order 𝑟: 

𝑇𝐻𝐿,1,𝑟(𝑡𝑖 , 𝑿𝒋) = 〈𝑇𝐻𝐿1〉 +∑𝑎𝑘(𝑿𝒋)𝜙(𝑡𝑖)

𝑟

𝑘=1

 

a) Raw signals 

 

b) Filtered signals 

 

c) Fluctuations of the signals 

 

d) Truncation error 𝜖1(𝑡) 

 

Figure 3 : Illustration of the quantity of interest during the filtering process. a) superposition 

of the raw signals and b) superposition of the filtered signal with 𝒓 = 𝟏. On c) the red part 

corresponds to a reconstruction of the fluctuations with 1 mode. The associated truncation 

error is given on d): mean value over time in red, black lines corresponds to an interval 𝝁 ±

𝟏. 𝟔𝟓𝝈 while the grey lines correspond to realizations of the truncation error on the different 

snapshots.  

The truncated fluctuations are denoted 𝑇𝑗
′(𝑟, 𝒕): 

𝑇𝑗
′(𝑟, 𝒕) = ∑𝑎𝑘(𝑿𝒋)𝜙(𝑡𝑖)

𝑟

𝑘=1

 

A ratio can be calculated to compare the time fluctuations of the signals in front of the variability of 

the signals and see its impact on the assessment of correlations: 

𝑅 =
〈𝜎𝑇′(𝑟,𝒕)〉𝑡

〈𝜎𝑇𝑗
′(𝑟,𝑡)〉𝑗≤𝑁Σ 

 

Where 𝜎𝑇′(𝑟,𝒕) is the time evolution of the standard deviation between the filtered signals evaluated 

over the ensemble Σ, and 𝜎𝑇𝑗
′(𝑟,𝑡) the standard deviation of signal 𝑇𝑗

′(𝑟, 𝒕) evaluated over time. These 

two standard deviations are then averaged respectively over time and over the ensemble to compute 

the ratio. 
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3.3. Determination of quantiles 

The evaluation of the CFD outputs with DS ensembles presented in §2.1.3 enables the evaluation 

of statistical moments up to order 2 to 4 depending on the complexity of the ensemble. These 

statistical moments can then be used with additional assumptions on the output’s distribution to 

assess a PDF, CDF, or quantiles. In this work, the additional information provided by the statistical 

model will be used to provide 𝑞-quantiles which represent a boundary under which a proportion 𝑞 of 

the population is represented. 

For instance, if we assume that the output RV 𝑌 follows a gaussian distribution q-quantiles can be 

assessed as following:  

 𝑄𝑞 = 𝜇𝑌 + 𝑘(𝑞) ∙ 𝜎𝑌 (3-1) 

Where 𝑘 depends on the percentage of realization that must be bounded. For instance, the 2.5% 

quantile is obtained for 𝑘(0.025) = −1.96, a 5% quantile for 𝑘(0.05) = −1.65. In this work, the 

Metalog distribution introduced in [10] is used as a model distribution to reconstruct the output 

distribution. This distribution has been chosen for its easiness of use in addition to the diversity of 

shapes it reproduces. The Metalog distribution is defined from its quantile function 𝑀𝑛(𝑞) for 𝑛 terms, 

with 𝑞 being the percentage of realization that must be bounded as follows (see [10]): 

 

 𝑀𝑛(𝑞) =

{
 
 
 
 

 
 
 
 𝑎1 + 𝑎2 ln (

𝑞

1 − 𝑞
)  for 𝑛 = 2

𝑎1 + 𝑎2 ln (
𝑞

1 − 𝑞
) + 𝑎3(𝑞 − 0.5) ln (

𝑞

1 − 𝑞
)    for 𝑛 = 3

𝑎1 + 𝑎2 ln (
𝑞

1 − 𝑞
) + 𝑎3(𝑞 − 0.5) ln (

𝑞

1 − 𝑞
) + 𝑎4(𝑞 − 0.5)   for 𝑛 = 4

𝑀𝑛−1(𝑞) + 𝑎𝑛(𝑞 − 0.5)
(
𝑛−1
2
 ) for odd 𝑛 ≥ 5

𝑀𝑛−1(𝑞) + 𝑎𝑛(𝑞 − 0.5)
(
𝑛
2
−1) ln (

𝑞

1 − 𝑞
)  for even 𝑛 ≥ 6

 (3-2) 

 

The coefficients (𝑎𝑖)𝑖≤𝑛 can be determined if discrete coordinates of the CDF are given. An 

alternative way of determining the coefficients is from the statistical moments.  

In this work, a decomposition with three or four terms is studied. For these decompositions, a closed 

form expressing the four first order moments with the coefficients is given in [10]. A four term Metalog 

distribution is first fitted which is then verified according to the validity domain of the Metalog model. 

If the provided distribution is outside the domain of validity (in practice, noticed due to non-monotone 

quantile function), a three term Metalog is fitted. The coefficients 𝑎1, 𝑎2, 𝑎3 and 𝑎4 are obtained by 

solving the system provided in [10] with the python module scipy [20]. The 𝑞-quantiles are then 

assessed directly from this function 𝑀𝑘. Calculating the derivative of 𝑀𝑘 provides the probability 

density function (PDF) 𝑚𝑘.  
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3.4. Sensitivity analysis 

3.4.1. Evaluation of the statistical quantities 

Statistical quantities can be computed from the 𝑁Σ computations launched. First, the DS approach 

of using weights is used to compute the mean and standard deviation from each ensemble 𝚺:  

𝜇𝑌 =∑𝑤𝑖𝑌
(𝑖)

𝑁Σ

𝑖=1

, 𝜎𝑌 = √∑𝑤𝑖(𝑌
(𝑖) − 𝜇𝑌)

2

𝑁Σ

𝑖=1

 

Where (𝑤𝑖)𝑖≤𝑁Σ are the weights of the ensemble 𝚺 and (𝑌(𝑖))
𝑖≤𝑁Σ

 the evaluation of quantity 𝑌 over 

the sigma points of ensemble 𝚺 which have been filtered with the approach described in the previous 

paragraph. Higher order centered statistical moments are evaluated with (2-3) and (2-4). In this study 

we will evaluate statistical moments up to order 4.  

In addition, the sensitivity of a quantity 𝑌 to the four inputs 𝑋1, 𝑋2, 𝑋3 and 𝑋4 is evaluated from the 

covariance and correlation coefficients calculated as following:  

𝑐𝑜𝑣(𝑋𝑗 , 𝑌) = √∑𝑤𝑖(𝑌
(𝑖) − 𝜇𝑌) (𝑋𝑗

(𝑖)
− 𝜇𝑋𝑗)

𝑁Σ

𝑖=1

, 𝑐𝑜𝑟𝑟(𝑋𝑗 , 𝑌) =
𝑐𝑜𝑣(𝑋𝑗 , 𝑌)

√𝑐𝑜𝑣(𝑋𝑗 , 𝑋𝑗) ∙ 𝑐𝑜𝑣(𝑋𝑗 , 𝑌)

 

Correlation and covariance will be evaluated on filtered signal when required if the data is too noisy.  

An illustration of the way to interpret correlation is shown on Figure 4. It can be seen on this figure 

that 𝑌 is highly correlated to 𝑋1 which means 𝑐𝑜𝑟𝑟(𝑋1, 𝑌) will be close to 1, is anti-correlated to 𝑋2 

meaning 𝑐𝑜𝑟𝑟(𝑋2, 𝑌) will present a more moderate negative value (in this case 𝑐𝑜𝑟𝑟(𝑋2, 𝑌) ≈ −0.4) 

and presents small to no correlation to 𝑋3 and 𝑋4.  

 

Figure 4: illustration of different correlation degrees between parameter 𝒀 and inputs 

𝑿𝟏, 𝑿𝟐, 𝑿𝟑 and 𝑿𝟒 

3.4.2. Processing of spatial data 

For 2D data, an additional step is performed with POD to find spatial correlations between the CFD 

outputs obtained on the ensembles 𝚺. The method will be illustrated on the 𝑖-th Fuel Assembly (FA) 

outlet temperature 𝑇𝐹𝐴,𝑜(𝑖) where 𝑖 corresponds to the index of the FA.  

If we take for instance an ensemble 𝚺 for which 𝑁𝛴 evaluations of 𝑇𝐹𝐴,𝑜(𝑖) are available. First, the 2D 

fields are processed to be arranged in columns. The 𝑁Σ snapshots available are concatenated in a 

snapshot matrix 𝑆. The mean value over all the columns 〈𝑇𝐹𝐴,𝑜〉 is calculated and subtracted from 
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each column. The POD base is then computed with the python module modred [21] with the 

snapshot method described in [12]. It should be noted that the snapshots are not time fluctuations 

but fluctuations of the 2D fields due to the different inputs. The POD applied to 𝑇𝐹𝐴,𝑜(𝑖) enables the 

calculation of modes 𝜙𝑘 which can then be used to write for all snapshots (𝑇𝐹𝐴,𝑜(𝑖, 𝑿𝒋))
𝑗≤𝑁Σ

 : 

𝑇𝐹𝐴,𝑜(𝑖, 𝑿𝒋) = 〈𝑇𝐹𝐴,𝑜〉 +∑𝑎𝑘(𝑿𝒋)𝜙(𝑖)

𝑟

𝑘=1

+ 𝜖𝑟(𝑖) 

An illustration of the decomposition is given on Figure 5. This decomposition is useful when making 

a sensitivity study of 2D data to uncertain inputs as it enables the observation of different modes of 

variation which can be correlated to different inputs.  

 

Figure 5: Illustration of the POD applied to 𝑻𝑭𝑨,𝒐(𝒊) with a truncation of order 𝒓 = 𝟐 

It should be noted that time filtering has not been done on this quantity of interest which is only 

extracted at 800 s. Most of the models yield smooth data due to the choice of the turbulence model 

and meshing, however, some models are less dissipative and yield more time variation. For these 

cases, the time fluctuations have some impact on the calculation of spatial correlations as it will not 

be possible to separate these fluctuations from the fluctuations due to the sensitivity of the model to 

the inputs’ variations.  

3.5. List of performed computations 

The list of computations performed are given in Table 3: 

Table 3: List of ensembles chosen for the different partners 

Partner Standard  Hadamard GHM HYBRID KRT1 HYBRID KRT2 

ENERGORISK X   X  

FRAMATOME X  X  X 

KIT  X    

UNIPI  X X   

CEA   X   

The results obtained by ENERGORISK, FRAMATOME, KIT and UNIPI models will be presented in 

the following section. The results obtained by CEA are given in Appendix C.  



CAMIVVER – 945081 – D6.3 - version 1 issued on 28/09/2023 

Page 20/72 

4. Results 

4.1. Mixing coefficients  

4.1.1. Overview of the results: 

The mean value of the mixing coefficient  𝐶1 evaluated on DS ensembles for the different models is 

given on Figure 6 and the standard deviation on Figure 7. Differences can be noticed between the 

mean values of 𝐶1 obtained from the different models: 

- ENERGORISK model shows more spread out non-zero values of 𝐶1 in the core, especially 

at the junction between leg 1 and leg 2. In addition, this model yields more moderate values 

around 0.5 at the junction between legs indicating a more important mixing with the other 

legs when compared to other models. Also, 𝐶1 presents slower spatial transition from 𝐶1(𝑖) =

0 to 𝐶1(𝑖) = 1.  

- FRAMATOME, KIT and UNIPI models present lower mixing between the legs at the junction 

between the different zones with quick transition from 𝐶1(𝑖) = 0 to 𝐶1(𝑖) = 1. However, KIT 

model shows additional mixing with FA having values 𝐶1(𝑖) ≈ 0.2 in the zones were most of 

the flow comes from leg 4 and leg 2.  

Regarding the standard deviation, small amplitudes are found for all partners, except for 

ENERGORISK model which yields more important standard deviation at junction between the 

different zones on a non-negligible number of FA. The calculation of the mixing coefficient with this 

model is more sensitive to variation to inputs when compared to the other models, where the mixing 

coefficient is almost unchanged in the range covered by the uncertain input parameters. In addition 

to the difference in amplitude between ENERGORISK model and the other models, more FA are 

affected by the variability of the inputs with ENERGORISK model than the others. This difference 

between partners might be due to the choice of turbulence model and meshing which might 

smoothen fluctuation for the other partners and not for ENERGORISK model which yields more 

unsteady results. 

Regarding the consistency of the evaluated standard deviation 𝜎𝐶1(𝑖), different ensembles yield very 

similar amplitudes and topology. More discrepancy is noticed between Σ𝑆𝑇𝐷 and the hybrid 

ensembles Σ𝐺𝐻𝑀 and Σ𝐾𝑅𝑇2 for FRAMATOME model. The same difference is noticed for 

ENERGORISK model, nevertheless, it is not clear in this case if the difference is due to the RV 

representation with Σ𝐾𝑅𝑇1 and Σ𝑆𝑇𝐷 or to the important time variations that was observed on the 

mixing for this model. The results for the 3 other mixing coefficients 𝐶2, 𝐶3 and 𝐶4 show the same 

conclusions.  
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a) ENERGORISK - Σ𝑆𝑇𝐷 

 

b) ENERGORISK - Σ𝐾𝑅𝑇1 

 

 

c) FRAMATOME - Σ𝑆𝑇𝐷 

 

d) FRAMATOME - Σ𝐾𝑅𝑇2 

 

e) FRAMATOME - Σ𝐺𝐻𝑀 

 

f) UNIPI - Σ𝐺𝐻𝑀 

 

g) UNIPI - Σ𝐻𝐴𝐷 

 

h) KIT - Σ𝐻𝐴𝐷 

 

Figure 6 : Mean value of the mixing coefficient 𝑪𝟏 evaluated for different CFD models and 

DS ensembles.  
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a) ENERGORISK - Σ𝑆𝑇𝐷 

 

b) ENERGORISK - Σ𝐾𝑅𝑇1 

 

c) FRAMATOME - Σ𝑆𝑇𝐷 

 

d) FRAMATOME - Σ𝐾𝑅𝑇2 

 

e) FRAMATOME - Σ𝐺𝐻𝑀 

 

f) UNIPI - Σ𝐺𝐻𝑀 

 

g) UNIPI - Σ𝐻𝐴𝐷 

 

h) KIT - Σ𝐻𝐴𝐷 

 

Figure 7 : Standard deviation of the mixing coefficient 𝑪𝟏 evaluated for different CFD 

models and DS ensembles.  
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4.1.2. Sensitivity analysis 

In this section, POD is applied to the snapshots obtained from the different ensembles to see how 

the variations of the mixing coefficient topology are correlated to some of the input parameters. First, 

the RIC number (see (2-6)) of the first mode 𝑅𝐼𝐶(1) is calculated for the POD applied to the different 

ensembles evaluated with the different CFD models, then the number of modes 𝑁𝑃𝑂𝐷 such as 

𝑅𝐼𝐶(𝑁𝑃𝑂𝐷) ≥ 0.99 is calculated. The results are given on Table 4.  

A first remark general to all CFD models is the relative importance of the first mode which is 

significantly higher than for higher orders. 

FRAMATOME model seem to show spatial fluctuations of the mixing in the core that can be 

expressed mainly with one mode. The second mode importance is significantly lower even though 

its use is required to reach 𝑅𝐼𝐶(𝑁𝑃𝑂𝐷) ≥ 0.99. This is seen with the snapshots of Σ𝐺𝐻𝑀 and Σ𝐾𝑅𝑇2 

ensembles. The mode that can be seen on Figure 8b shows that the variation of the inputs impact 

mainly the mixing between cold leg 1 and cold leg 4 and slightly the mixing between cold leg 1 and 

cold leg 2. This pattern is also observed for the standard deviation on Figure 7b which shows that 

the fluctuations are mainly due to this mode while the others can be neglected.  

ENERGORISK model is also mainly affected by the first mode with smaller importance of the 

following ones but in this case, considering or not the 2nd mode changes noticeably the fluctuations 

amplitude in some FA. As for FRAMATOME model, the topology of the first mode can be noticed on 

the standard deviation 2D field on Figure 7a but many fuel assemblies’ variations are not covered 

by this mode and require higher order modes to be represented.  

KIT model first mode effect on the fluctuations appears clearly to be a rotation of the mixing in the 

core, and as for FRAMATOME, the higher order modes show less spatial correlation to identified 

phenomenon. When comparing the standard deviation of the mixing coefficients 𝐶1 on Figure 7c, 

correlation to this mode 1 can be clearly seen.   

UNIPI model shows similar results as FRAMATOME and KIT with spatial variations mainly reflected 

by the first mode topology. But, in this model, using one mode only enables the reproduction of 

fluctuations of the mixing between leg 1 and 2. The second mode is required to reproduce variation 

of the mixing between cold leg 1 and 4 which is visible on the standard deviation depicted Figure 7d.  

In addition, the first mode for the four partners on different DS ensembles are given Figure 8. 

 

Table 4 : RIC for one mode and number of modes 𝑵𝑷𝑶𝑫 required for 𝑹𝑰𝑪(𝑵𝑷𝑶𝑫) ≥ 𝟎. 𝟗𝟗 

Partner - Ensemble 𝑹𝑰𝑪(𝑵𝑷𝑶𝑫 = 𝟏) 𝑵𝑷𝑶𝑫 

ENERGORISK Σ𝐾𝑅𝑇1 0.7 8 

ENERGORISK Σ𝑆𝑇𝐷 0.75 6 

FRAMATOME Σ𝐾𝑅𝑇2 0.96 2 

FRAMATOME Σ𝐺𝐻𝑀 0.98 2 

KIT Σ𝐻𝐴𝐷 0.8 5 

UNIPI Σ𝐻𝐴𝐷 0.8 3 

UNIPI Σ𝐺𝐻𝑀 0.8 4 
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a) ENERGORISK Σ𝐾𝑅𝑇1 

 

b) FRAMATOME Σ𝐾𝑅𝑇2 

 

c) KIT Σ𝐻𝐴𝐷 

 

d) UNIPI Σ𝐺𝐻𝑀 

 

e) UNIPI Σ𝐺𝐻𝑀 

 

Figure 8 : Mode 1 of the POD applied to the snapshots of 𝑪𝟏(𝒊) obtained on different 

ensembles with different CFD models and mode 2 for UNIPI 𝜮𝑮𝑯𝑴 snapshots 

 

The evolution of the component 𝑎1 with the input parameters is indicated on Figure 9. It can be 

noticed that the components 𝑎1 from UNIPI and FRAMATOME model present high correlation to the 

flowrate values. In comparison, the correlation of 𝑎1 to the inputs is unclear for ENERGORISK model 

while KIT model shows correlation to the total power in the core. Slight correlation to the flowrate is 

observed on KIT model but with a significantly lower amplitude than for UNIPI and FRAMATOME 

model. The results obtained for the other mixing coefficients were basically the same and are thus 

not described in this section. 
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a) ENERGORISK - Σ𝐾𝑅𝑇1 

 

b) FRAMATOME - Σ𝐾𝑅𝑇2 

 

c) KIT - Σ𝐻𝐴𝐷 

 

d) UNIPI - Σ𝐺𝐻𝑀 

 

Figure 9 : Evolution of 𝒂𝟏 with the input parameters for POD performed on the results of the 

different CFD models/DS ensembles 

4.1.3. Evaluation of quantiles 

The quantiles of the mixing coefficient 𝐶1(𝑖) are calculated using the 4 term Metalog distribution given 

in (3-2). The results for the different CFD models and DS ensembles are indicated on Figure 10. A 

preliminary remark that can be done is the fact that the fit of the Metalog distribution (3 or 4 term 

Metalog) on evaluations with ENERGORISK CFD model on Σ𝐾𝑅𝑇1 model led to infeasible 

distributions on most of the fuel assemblies of the core (see Figure 11). The fit was successful for 

most of the FA in the core for all the other models/ensembles. Different remarks can be done on the 

results:  

- The evaluation of the quantiles with ENERGORISK model on Σ𝑆𝑇𝐷 ensemble shows much 

more spread-out values of the mixing coefficients than the other models, reflecting the higher 

variability of the results with this model.  

- Values obtained with FRAMATOME and UNIPI models show small variability with slight 

fluctuations that can be noticed near junctions.  

- Quantiles are slightly more spread out for KIT model near junctions showing more 

variability of the mixing coefficient in the core.  
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a) ENERGORISK - Σ𝑆𝑇𝐷 

   

 

b) FRAMATOME - Σ𝐾𝑅𝑇2 

   

c) KIT - Σ𝐻𝐴𝐷 

   

d) UNIPI - Σ𝐻𝐴𝐷 

   

Figure 10 : Quantiles 2.5%, 50% and 97.5% on the mixing coefficient 𝑪𝟏(𝒊) for different 

ensembles and models. FA are white when the fitted Metalog distribution was infeasible. 
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Figure 11 : 2.5% (left) and 97.5% (right) quantiles calculated with a Metalog distribution with 

ENERGORISK CFD model on 𝜮𝑲𝑹𝑻. FA are white when the fitted Metalog distribution was 

infeasible.  

 

4.1.4. Discussion on the mixing coefficients results 

The mixing coefficient has been found to vary slightly for FRAMATOME and UNIPI CFD models in 

the range covered by the evaluated ensembles, slightly more with KIT model and more significantly 

with ENERGORISK model. In this reproduction of the mixing experiment on Kozloduy-6 reactor, 

mixing in the core is a key phenomenon impacting the increase of temperature in hot legs during the 

transient when the temperature in cold leg 1 increases. For most of the partners the variations of the 

mixing map in the core were small, localized at junctions between zones influenced by the cold leg 

1 and 2 and the junction between zones influenced by leg 1 and 4. Both FRAMATOME and UNIPI 

model found a correlation of the variations of the mixing map in the core to the flowrate in cold leg 1, 

while KIT model found correlation to the core power and ENERGORISK model no clear correlation. 

It should nevertheless be noted that the two most sensitive model relied on 𝑘 − 𝜔 SST model which 

might be less dissipative and induce higher variations that are smoothened with the Standard 𝑘 − 𝜖 

model used by UNIPI and Realizable 𝑘 − 𝜖 model used by Framatome (see [2] and [3] for more 

information on models).   

Different DS ensembles were used to evaluate the uncertainty on the mixing coefficient which did 

not affect importantly the results, showing consistency of the method to propagate statistical 

moments. Some discrepancies were however noticed for ENERGORISK model which showed 

important variability of the mixing on the evaluation points. For this model, the low number of 

evaluations and the important discrepancy resulted in a more important deviations between the 

ensembles used to represent the random variable. However, the variations between the ensembles 

was still negligible on average in the core and showed important values (0.3 instead of 0.25 for the 

value of 𝐶𝑖) on a limited number of FA.  

As a conclusion, the relatively low discrepancy of the results between the partners model which use 

different softwares, models and DS ensembles should still be noted.  

Additional study on the combined effect of meshing and turbulence modelling should be done in the 

future to verify the effect of meshing in the model (grid size, type of cells, local refinement etc…) on 

the 𝑘 − 𝜔 SST and 𝑘 − 𝜖 time fluctuations.  
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4.2. Hot leg 1 temperature 𝑻𝑯𝑳,𝟏 

4.2.1. Overview of the results variability 

The signals giving the time evolution of the hot leg 1 temperature 𝑇𝐻𝐿,1(𝑡) for all computations 

performed by the partners are given on Figure 12 and Figure 13a. The mean values over the 

computations are given on Figure 13b. Different remarks can be made on the results: 

- Important variations can be noticed when considering uncertainties in comparison to the 

mean computations visible in black solid line on Figure 12. In fact, variation of parameters 

seems to guide the solution to lower values of the temperature during all the transient.  

- The outputs mean values are similar between partners as it can be seen on Figure 13b with 

mean values showing small discrepancy (around 1°𝐶).  

- More time fluctuations of the temperature are noticed for ENERGORISK model on Figure 

12a, which might be due to the more important fluctuation of the mixing map in the core as it 

has been noticed in the previous paragraph for 𝐶1(𝑖). In comparison, the results obtained 

from the other partners were smooth with time fluctuations negligible in front of the 

discrepancy between the signals.  

a) ENERGORISK 

 

b) FRAMATOME 

 

c) KIT 

 

d) UNIPI 

 

Figure 12: Time evolution of 𝑻𝑯𝑳,𝟏 obtained from the different ensembles and partners. 

Evaluation of CFD for the mean set of inputs (black) and for individual (red) and combined 

(blue) variations of inputs.  
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a) All computations 

 

b) Mean values 

 

Figure 13: Comparison of the time evolution of increase of hot leg 1 temperature. All 

computations (a) and mean values (b). 

 

4.2.2. Time fluctuations vs variability of signals due to inputs variability 

A summary of the value of the ratio 𝑅 which is the ratio between the amplitude of the time fluctuations 

of the signals and the amplitude of the variability between the signals over time is given in Table 5 

for non-filtered signals and filtered signals (𝑟 = 1). The evolution of 𝑅 with the truncation order 𝑟 is 

given on Figure 14 . 

 

Table 5: ratio 𝑹 calculated before/after filtering (truncation with 𝒓 = 𝟏 ) for the different 

partners. 

Partner  Filtered No filter 

FRAMATOME 𝑅 = 0.002 𝑅 = 0.035 

ENERGORISK 𝑅 = 0.057 𝑅 = 0.235 

KIT 𝑅 = 0.003 𝑅 = 0.022 

UNIPI 𝑅 = 0.018 𝑅 = 0.051 

 

The impact of the filtering is limited on FRAMATOME, UNIPI and KIT signals as the time fluctuations 

are small in amplitude in front of the variability of the signals (<5% in amplitude) while the impact is 

noticeable on ENERGORISK signals where the time fluctuations’ amplitude are on average around 

23% of the deviation between signals. These fluctuations are coherent with the results obtained in 

§4.1 where more variations of the mixing coefficients were found between the different computations. 

The impact on the hot leg 1 temperature downstream of the core is visible in this case.  

For all partners, raw data will still be used for the evaluation of statistical moments. Filtering will be 

performed on ENERGORISK signals to see the potential effect on the statistical moments and 

evaluated correlation to input parameters. 
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a) ENERGORISK 

 

b) FRAMATOME 

 

c) KIT 

 

d) UNIPI 

 

Figure 14: evolution of the ratio between time fluctuations and signal variability 𝑹 with the 

truncation order of the filtering 𝒓.  

4.2.3. Increase of temperature in the hot leg 1  

The four first statistical moments are evaluated with all ensembles for all the partners for the increase 

of temperature in the hot leg 1 𝛥𝑇𝐻𝐿,1 = 𝑇𝐻𝐿,1(𝑡0 + 800𝑠) − 𝑇𝐻𝐿,1(𝑡0). The statistical moments of 

𝛥𝑇𝐻𝐿,1 evaluated with the DS ensembles are summarized in Table 6.  

The mean evaluated on FRAMATOME model with Σ𝑆𝑇𝐷 is 0.2°C lower than with Σ𝐺𝐻𝑀 and Σ𝐾𝑅𝑇2. 

Similar differences are seen for ENERGORISK model with Σ𝑆𝑇𝐷 and Σ𝐾𝑅𝑇1 evaluations in raw data. 

This might indicate a non-statistically converged result with Σ𝑆𝑇𝐷 which lacks in its representation of 

the RV as the combinations of simultaneous variations of inputs are not evaluated. The signals 

obtained from these inputs can be seen in red on Figure 12. It is visible that even though the 

amplitude of the variations of the input parameters are similar between the ensembles, the resulting 

discrepancy between the output is larger when the parameters vary simultaneously. This indicates 

the importance of evaluating the CFD response on those inputs.  

Lower discrepancy between ensembles can be seen for the variance. The amplitude of the variance 

is more important on ENERGORISK model which yields signal presenting some higher amplitude 

time fluctuations which seems logical. When filtering, the variance decreases significantly and lower 

variations between ensembles can be seen. In comparison, UNIPI model evaluated on Σ𝐺𝐻𝑀 is five 

time lower than non-filtered signals from ENERGORISK, but still approximatively four time more 

important than other evaluations. This more important value of the variance might be due to the 

presence of one signal showing a more significant deviation as it can be seen on Figure 12d for the 
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signal with the lowest amplitude. The amplitude of the variance is the lowest for KIT model showing 

low discrepancy between the signals.  

The ensembles which yield sparser results present higher values of skewness and kurtosis as it can 

be seen for UNIPI Σ𝐺𝐻𝑀 signals and ENERGORISK nonfiltered signals. In addition, the discrepancy 

of the skewness and kurtosis between ensembles that enforces higher moments (Σ𝐺𝐻𝑀 and Σ𝐾𝑅𝑇) 

and the other (Σ𝐻𝐴𝐷 and Σ𝑆𝑇𝐷) is not obvious.  

 

Table 6 :Statistical moments on the output 𝒀 = 𝜟𝑻𝑯𝑳,𝟏 

Partner Ensemble 𝝁𝒀 〈𝜹𝟐𝒀〉 〈𝜹𝟑𝒀〉 〈𝜹𝟒𝒀〉 

ENERGORISK STD 10.734 2.5142e-1 1.3301e-1 2.5065e-1 

HYBKRT1 10.522 2.0049e-1 -2.6118e-2 2.1102e-1 

STD 𝑟 = 1 10.395 8.7158e-3 -1.0450e-4 1.8219e-4 

HYBKRT1 𝑟 = 1 10.381 7.0479e-3 -3.2538e-4 2.5218e-4 

FRAMATOME STD 11.076 1.4757e-2 -5.3462e-4 8.6554e-4 

GHM 11.214 1.2457e-2 -1.3638e-4 6.0872e-4 

HYBKRT2 11.213 1.2560e-2 -2.4972e-4 4.6004e-4 

KIT HADAMARD 10.956 4.2190e-3 -2.3074e-5 2.2452e-5 

UNIPI HADAMARD 10.880 1.2232e-2 -1.6610e-4 1.8229e-4 

GHM 10.840 5.6689e-2 -4.6953e-2 4.9123e-2 

 

The statistical moments were used to fit a 𝑘 term metalog distribution given in (3-2). At first, a four 

term Metalog was fitted for 𝛥𝑇𝐻𝐿,1 which yielded infeasible distributions for most of the results, thus 

a 3 terms metalog was fitted. Values of quantiles for all ensembles and partners can be found in 

Table 7.  

The quantile functions 𝑀3(𝑦) obtained for each partner and ensemble are given on Figure 15. It 

should be noted that the 3 term Metalog distribution could not be fitted on the GHM ensemble from 

UNIPI due to the high value of the skewness which is beyond the range of values acceptable for the 

Metalog distribution.  

The derivative is calculated to evaluate the PDF which is given on Figure 16. It should be noted that 

the value of the kurtosis is not considered in the 3 term Metalog. Thus, ensembles which differ mainly 

by their statistical moments of order 4 will still show strong similarities as it can be seen on GHM and 

HYBKRT ensembles quantile function or PDF Figure 15b and Figure 16. In comparison, the Metalog 

fitted on statistical moments evaluated with STANDARD ensemble is shifted due to differences on 

the mean value. The distributions show low asymmetry. This can be noticed when comparing the 

median 𝑄50% to the mean value 𝜇𝑌 for the different ensembles showing strong similarities. Slightly 

higher deviation between the median and mean value can be noticed on ENERGORISK model. In 

fact, a difference around 0.13°C between the median and mean value is calculated (non-filtered 

signals) which is coherent with the more important skewness indicated in Table 6.  
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Table 7 :Evaluation of quantiles on 𝒀 = 𝜟𝑻𝑯𝑳,𝟏 with different ensembles 

Partner Ensemble 𝑸
𝟐.𝟓%

 𝑸
𝟓%

 𝑸
𝟓𝟎%

 𝑸
𝟗𝟓%

 𝑸
𝟗𝟕.𝟓%

 

ENERGORISK STD 9.97 10.09 10.64 11.67 11.95 

HYBKRT1 9.57 9.76 10.54 11.21 11.37 

FRAMATOME STD 10.82 10.87 11.08 11.26 11.31 

GHM 10.98 11.03 11.22 11.39 11.43 

HYBKRT2 10.98 11.03 11.22 11.39 11.43 

KIT HADAMARD 10.82 10.85 10.96 11.06 11.08 

UNIPI HADAMARD 10.64 10.68 10.81 10.95 10.99 

GHM N.A. N.A. N.A. N.A. N.A. 

 

a) ENERGORISK (non-filtered) 

 

b) FRAMATOME 

 

c) KIT 

 

d) UNIPI 

 

Figure 15: Quantile functions associated to the fitted Metalog distribution for the different 

ensembles and partners 
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a) ENERGORISK (non-filtered) 

 

b) FRAMATOME 

 

c) KIT 

 

d) UNIPI 

 

Figure 16 : Non normalized PDF associated to the fitted Metalog distribution for the different 

ensembles and partners 

 

4.2.4. Time evolution of the hot leg 1 temperature 

The same data processing as Δ𝑇𝐻𝐿,1 is applied for each instant of the time evolving signal 𝑇𝐻𝐿,1(𝑡): 

statistical moments are calculated up to order 4 which are then used to fit a four term Metalog 

distribution. If the resulting distribution is infeasible, a three term Metalog is fitted. This distribution is 

then used to evaluate the quantiles 𝑄2.5%, 𝑄5%, 𝑄50%, 𝑄95% and 𝑄97.5%. It should be noted that very 

few instants in the time evolution yielded infeasible 4-term Metalog (<1%).  

The time evolution of the mean value and quantiles for the different ensembles is given for 

ENERGORISK on Figure 17 for filtered and non-filtered signals, and on Figure 18 for the other 

partners. The effect of filtering can be seen on Figure 17 where the quantiles 𝑄2.5%, 𝑄5% show less 

fluctuations on filtered signals for the Σ𝑆𝑇𝐷 ensemble. Its effect is less visible for the Σ𝐾𝑅𝑇1 ensemble 

where the individual weight of the fluctuating signals is less important due to higher number of 

samples. When looking at the results of the different partners, it can be noticed that most of the 

experimental data is bounded by the quantiles 𝑄2.5% and 𝑄97.5%. In addition, the experimental 

uncertainty is not indicated on the figures, but it should be reminded that the experimental uncertainty 

is around ±2°𝐶. 
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a) ENERGORISK – STANDARD (non-filtered) 

 

b) ENERGORISK – HYBKRT (non-filtered) 

 

c) ENERGORISK – STANDARD (filtered) 

 

d) ENERGORISK – HYBKRT (filtered) 

 

Figure 17 : Time evolution of 𝑻𝑯𝑳,𝟏 – Mean value (dotted black), median value (solid white), 

𝑸𝟓%, 𝑸𝟗𝟓% (filled red), 𝑸𝟐.𝟓%, 𝑸𝟗𝟕.𝟓% (filled salmon) and experimental value (solid blue) 

Regarding the sensitivity of the results to the ensemble, different remarks can be made. First, it can 

be noticed that the distribution’s skewness is only noticeable on UNIPI-Σ𝐺𝐻𝑀 and ENERGORISK-

Σ𝐾𝑅𝑇1. Nevertheless, this impact is still negligible in front of the variance of the signal. In addition, it 

can be noticed that enforcing the fourth order moment (with Σ𝐺𝐻𝑀 or Σ𝐾𝑅𝑇 ensembles) impacts the 

quantiles as the tails of the distributions seem more spread out inducing larger confidence intervals. 

Finally, the additional information provided by the mixed moments of order 4 with Σ𝐾𝑅𝑇1 ensemble is 

not visible in this case. 

 

The intersections and union of the time evolution of the interval [𝑄2.5%, 𝑄97.5%] between partners are 

given on Figure 19. The intervals given are ENERGORISK evaluations over Σ𝐾𝑅𝑇2, UNIPI 

evaluations over Σ𝐺𝐻𝑀, FRAMATOME over Σ𝐺𝐻𝑀 and KIT over Σ𝐻𝐴𝐷. It is visible that the experimental 

measurements are within the [𝑄2.5%, 𝑄97.5%] interval provided.  
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a) FRAMATOME – STANDARD  

 

b) FRAMATOME – GHM  

 

c) FRAMATOME – HYBKRT  

 

d) KIT – HADAMARD  

 

e) UNIPI – HADAMARD  

 

f) UNIPI – GHM  

 

Figure 18: Time evolution of 𝑻𝑯𝑳,𝟏 – Mean value (dotted black), median value (solid white), 

𝑸𝟓%, 𝑸𝟗𝟓% (filled red), 𝑸𝟐.𝟓%, 𝑸𝟗𝟕.𝟓% (filled salmon) and experimental value (solid blue) 
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Figure 19: Intersection and union of the interval [𝑸𝟐.𝟓%, 𝑸𝟗𝟕.𝟓%] over the evaluations. Union 

of the intervals between partners/ensembles (red), intersection of intervals (black), 

experimental values (blue) 

4.2.5. Sensitivity analysis 

Correlations between the output 𝑌 = Δ𝑇𝐻𝐿,1 and the inputs 𝑋1, 𝑋2, 𝑋3, 𝑋4 which are respectively the 

flow rate in cold leg 1, the temperature in cold leg 2, the temperature in cold leg 1 and the total power 

in the core, are calculated and given on Table 8. An important correlation of 𝑌 to 𝑋1 is observed for 

most of the models and ensembles. The evolution of 𝑌 with the amplitude of 𝑋1 is given on Figure 

20. For FRAMATOME, UNIPI and KIT, a clear correlation between 𝑋1 and 𝑌 can be seen on this 

figure. However, one of the set of inputs from Σ𝐺𝐻𝑀 yields a significantly different output affecting the 

evaluated correlation. The evaluation of 𝑌 with ENERGORISK model shows more results variability 

with no clear correlations.  

 

Table 8 :Correlation of the inputs with the output 𝒀 = 𝜟𝑻𝑯𝑳,𝟏 

Partner Ensemble 𝒄𝒐𝒓𝒓(𝒀,𝑿𝟏) 𝒄𝒐𝒓𝒓(𝒀,𝑿𝟐) 𝒄𝒐𝒓𝒓(𝒀, 𝑿𝟑) 𝒄𝒐𝒓𝒓(𝒀,𝑿𝟒) 

ENERG STD -0.19 -0.02 0.15 -0.60 

HYBKRT2 -0.36 -0.21 0.06 -0.19 

FRAMA STD 0.99 -0.07 -0.01 -0.05 

GHM 0.95 -0.29 0.00 -0.01 

HYBKRT1 0.95 -0.31 0.00 -0.05 

KIT HADAMARD 0.95 -0.06 0.12 -0.13 

UNIPI HADAMARD 0.97 0.09 -0.19 -0.01 

GHM 0.02 0.41 0.26 0.35 
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Figure 20: Scatter plot for 𝒀 = 𝜟𝑻𝑯𝑳,𝟏 as a function of 𝑿𝟏 

Scatter plots on which the evolution of 𝑌 with respect to 𝑋𝑖 , 𝑋𝑗 are given for ENERGORISK, 

FRAMATOME, KIT and UNIPI models respectively on Figure 21, Figure 22, Figure 23 and Figure 

24. The amplitude of 𝑌 is indicated by a colormap. Having combined effect of parameters can be 

seen on these scatter plots when a different behavior is seen in principal directions and the 

diagonals. If we first look at FRAMATOME model on Figure 22, combined effects of 𝑋1  and 𝑋2 on 𝑌 

can be seen. For instance, the impact of the increase of 𝑋1 and decrease of 𝑋2 on the amplitude of 

𝑌 is less important when they are taken separately rather than simultaneously. This behavior can 

also be seen for KIT model on Figure 23. For UNIPI combined effects are much more present 

between 𝑋2 and 𝑋3. The data from ENERGORISK given on Figure 21 shows more noise which hides 

correlations. However, we can still observe that high values of flowrate yielded significantly lower 

results which seem to show a different behavior of CFD on that range than for lower values of 

flowrates.  

 
 

Figure 21 : Evolution of 𝜟𝑻𝑯𝑳,𝟏 on scatter plots 𝑿𝒊, 𝑿𝒋 – ENERGORISK – Amplitude of 𝒀 is 

given with a jet colormap 
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Figure 22 : Evolution of 𝜟𝑻𝑯𝑳,𝟏 on scatter plots 𝑿𝒊, 𝑿𝒋 – FRAMATOME – Amplitude of 𝒀 is 

given with a jet colormap  

  

Figure 23: Evolution of 𝜟𝑻𝑯𝑳,𝟏 on scatter plots 𝑿𝒊, 𝑿𝒋 – KIT – Amplitude of 𝒀 is given with a 

jet colormap  
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Figure 24 : Evolution of 𝜟𝑻𝑯𝑳,𝟏 on scatter plots 𝑿𝒊, 𝑿𝒋 – UNIPI – Amplitude of 𝒀 is given with a 

jet colormap  

4.2.6. Conclusion on 𝑼𝒊𝒏𝒑𝒖𝒕𝒔 

A realization 𝛿𝑈𝑖𝑛𝑝𝑢𝑡𝑠 of the random variable (RV) 𝑈𝑖𝑛𝑝𝑢𝑡𝑠 can be written: 

𝛿𝑈𝑖𝑛𝑝𝑢𝑡𝑠 = 𝑓𝐶𝐹𝐷(𝝁𝑿) − 𝛿𝑓𝐶𝐹𝐷(𝜹𝑿) 

The quantity 𝑓𝐶𝐹𝐷(𝝁𝑿) is a constant, thus, the statistical moments of order 𝑚 ≥ 2 of 𝑈𝑖𝑛𝑝𝑢𝑡𝑠 are the 

same as 𝑇𝐻𝐿,1(𝑡) and Δ𝑇𝐻𝐿,1 (according to which uncertainty we try to assess). However, the mean 

values are shifted to a value reflecting the bias of the CFD results when considering or not the inputs 

uncertainties.  

𝜇𝑈𝑖𝑛𝑝𝑢𝑡𝑠 = 𝑓𝐶𝐹𝐷(𝝁𝑿) − 𝜇𝑓𝐶𝐹𝐷(𝑿) 

The mean value and standard deviation of 𝑈𝑖𝑛𝑝𝑢𝑡𝑠 are given on Table 9 and plotted on Figure 25. 

Table 9 :Mean and standard deviation of 𝑼𝒊𝒏𝒑𝒖𝒕𝒔 for the calculation of 𝒀 = 𝜟𝑻𝑯𝑳,𝟏 

Partner Ensemble 𝝁𝑼𝒊𝒏𝒑𝒖𝒕𝒔 𝝈𝑼𝒊𝒏𝒑𝒖𝒕𝒔 

ENERGORISK STD -5.4e-2°C 0.50°C 

HYBKRT2 0.16°C 0.45°C 

STD (filtered) 0.28°C 0.09°C 

HYBKRT2 (filtered) 0.30°C 0.08°C 

FRAMATOME STD 0.15°C 0.12°C 

GHM 4.4e-3°C 0.11°C 

HYBKRT1 4.3e-3°C 0.11°C 

KIT HADAMARD 4.1e-3 °C 6.7e-2°C 

UNIPI HADAMARD 3.4e-2°C 0.11°C 

GHM 7.3e-2°C 0.24°C 
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Figure 25: mean value (point) and standard deviation (error bars) evaluated for the different 

partners and ensemble.  

In the general case, the amplitude of the bias induced by the uncertain parameters is lower than the 

variability induced by the inputs except for FRAMATOME evaluation on ΣSTD where both are of the 

same amplitude. The results obtained with FRAMATOME, UNIPI and KIT models which showed 

small time fluctuations should be considered ±0.5°. In comparison, ENERGORISK results for Δ𝑇𝐻𝐿,1 

show more important fluctuations which is consistent with the results obtained on the mixing 

coefficient 𝐶1 in §4.1. In fact, the temperature in hot leg 1 reflects the mixing in the core, thus, it is 

normal to have more variance on temperature for this model as more variance has been noticed on 

the mixing in the core. The results can be considered ±1°𝐶. When the filtering is applied, the bias 

increases significantly however the standard deviation is divided by 5.  

The sensitivity of the results to the flowrate variations are visible for all models. Correlations between 

Δ𝑇𝐻𝐿,1 and 𝑄𝐶𝐿,1 were found for UNIPI, KIT and FRAMATOME models. It has also been noticed that 

the values of correlations can be affected by individual points presenting important discrepancy 

compared to others as the total number of evaluations is small. Concerning the sensitivity of Δ𝑇𝐻𝐿,1, 

some models showed a combined effect of parameters which increased the fluctuations when 

compared to separate fluctuations of inputs.  

Regarding the use of DS for uncertainty propagation, the importance of the choice of the DS 

ensemble has been highlighted. In fact, different behaviors of the CFD models were observed 

whether the inputs were varying simultaneously or separately. Thus, ensembles enabling the 

evaluation of CFD for combinations of parameters should be preferred than separate variations 

between parameters. The ensembles Σ𝐾𝑅𝑇1 and Σ𝐾𝑅𝑇2 seems to be a good choice for propagating 

as it combines separate and simultaneous variations of parameters. In addition, the results obtained 

with different ensembles and the fit of the Metalog distribution showed the impact of enforcing the 

fourth order moment on the evaluation of quantiles which were more spread out when kurtosis was 

correctly enforced when compared to more basic ensembles. This impact is nevertheless limited to 

the kurtosis of the output and is negligible for instance on the variance of the output. In addition, the 

gain of enforcing mixed moment of order 4 is not obvious when comparing Σ𝐾𝑅𝑇 ensembles to Σ𝐺𝐻𝑀 

which yield similar quantiles.  

In conclusion, the DS method of propagation enabled the assessment of quantiles and statistical 

moments of 𝑈𝑖𝑛𝑝𝑢𝑡𝑠. Also, the consistency of the statistical moments obtained with the different 

ensembles is representative of the model response: if the CFD model sensitivity to the inputs is 

strong and chaotic, the uncertainty will be higher with amplitudes of the order of magnitude of the 

time fluctuations of the signal. Also, the results will be more dependent to the chosen ensemble as 

it has been seen on ENERGORISK outputs and correlation to parameters will be unclear. In 

comparison, if the CFD model is less noisy, the variance is lower and correlation to the parameters 

is noticeable. It should still be noted that the quantiles obtained from the different partners are 

consistent with good agreement between models, ensembles, and experimental data.  
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4.3. FA Temperature average 

4.3.1. Overview of the results 

Example of 2D views of mass flow averaged outlet temperature for each fuel assembly 𝑖 at 𝑡 = 𝑡0 +

800𝑠 𝑇𝐹𝐴,𝑜(𝑖) are given for the different CFD models on Figure 26. Differences are visible on these 

examples on the amplitude of the temperature and the mixing in the core.  

 

a) ENERGORISK 

 

b) FRAMATOME 

 

 

c) KIT 

 

d) UNIPI 

 

Figure 26 : Temperature 𝑻𝑭𝑨,𝒐(𝒊) (K) at 𝒕 = 𝒕𝟎 + 𝟖𝟎𝟎𝒔 – Examples for the different partners 

The mean values and standard deviation of 𝑇𝐹𝐴,𝑜(𝑖) evaluated from the different ensembles are given 

respectively on Figure 27 and Figure 28. First it can be noticed that the topology is similar between 

all partners and are representative of the mixing map 𝐶1(𝑖) described in §4.1. In terms of amplitude, 

ENERGORISK model yields lower values of the temperature maximum due to higher mixing, 

followed by KIT, UNIPI and FRAMATOME evaluations. This result is coherent with the mixing 

coefficient values obtained for the different models in §4.1. 

Regarding the standard deviation, similar amplitudes are observed for all partners except for 

ENERGORISK which outputs presented more fluctuations. This might be due to the time fluctuations 

that were also observed when studying the hot leg 1 temperature. These fluctuations seem to be 

related to the mixing in the core which shows more variability than for other models. In fact, the 

topology of the standard deviation distribution in the core shows important values at junctions 

between the affected zone of the different cold legs as it can be seen for the mixing coefficient on  

Figure 7a and Figure 7b. In comparison, the topology of the standard deviation obtained from the 

other partners models presents symmetries between the mixing zones 1 and 2 corresponding to 

areas affected by cold legs 1 and 2 and are more consistent from a computation to another.  
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a) ENERGORISK - Σ𝑆𝑇𝐷 

 

b) ENERGORISK - Σ𝐾𝑅𝑇1 

 

 

c) FRAMATOME - Σ𝑆𝑇𝐷 

 

d) FRAMATOME – Σ𝐺𝐻𝑀 

 

e) FRAMATOME - Σ𝐾𝑅𝑇2 

 

f) KIT – Σ𝐻𝐴𝐷 

 

g) UNIPI - Σ𝐺𝐻𝑀 

 

h) UNIPI- Σ𝐻𝐴𝐷 

 

Figure 27 : Mean value of 𝑻𝑭𝑨,𝒐(𝒊) (K) at 𝒕 = 𝒕𝟎 + 𝟖𝟎𝟎𝒔 – Results for the different 

partners/ensembles 
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a) ENERGORISK - Σ𝑆𝑇𝐷 

 

b) ENERGORISK - Σ𝐾𝑅𝑇1 

 

c) FRAMATOME - Σ𝑆𝑇𝐷 

 

d) FRAMATOME – Σ𝐺𝐻𝑀 

 

e) FRAMATOME - Σ𝐾𝑅𝑇2 

 

f) KIT – Σ𝐻𝐴𝐷 

 

g) UNIPI - Σ𝐺𝐻𝑀 

 

h) UNIPI- Σ𝐻𝐴𝐷 

 

Figure 28 : Standard deviation of 𝑻𝑭𝑨,𝒐(𝒊) (K) at 𝒕 = 𝒕𝟎 + 𝟖𝟎𝟎𝒔 – Results for the different 

partners/ensembles 
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If we investigate some specific computations, different topology of spatial fluctuations when 

compared to the mean calculation can be seen. Examples are given on Figure 29. The topology of 

the fields is a good indicator of the impact of inputs variations in the core. Increasing the temperature 

in cold leg 2 induces an increase of temperature near cold leg 2 zone of influence in the core (see 

Figure 29b). The topology of this fluctuations shows important similarities to the mixing map 𝐶2(𝑖), 

which reflects the way the temperature coming from the cold leg 2 is mixed in the core. Increasing 

the total power induces an increase of temperature in specific region of the core related to the power 

and mass flow distribution (see Figure 29a), while combining inputs variations seem to combine the 

spatial variations (see Figure 29d). Nevertheless, it should be noted that for some models, the 

response to inputs variations were more chaotic due to the fluctuations of mixing in the core.  

 

a) Variation of power 𝑃𝑐𝑜𝑟𝑒 

 

b) Variation of temperature 𝑇𝐶𝐿,2 

 

c) Variation of flow rate 𝑄1 

 

d) Simultaneous variation of parameters 

 

Figure 29 : Example of 2D variation field 𝑻𝑭𝑨,𝒐(𝒊, 𝑿 ) − 𝑻𝑭𝑨,𝒐(𝒊, 𝝁𝑿) for different variations of 

inputs 𝑿. 

4.3.2. Sensitivity analysis 

The sensitivity of 𝑇𝐹𝐴,𝑜(𝑖) to the different inputs is studied in this section. This study is done by 

applying the POD described in §2.2 to find spatial correlation between the variations of the 2D fields 

with the modification of the inputs 𝑋1, 𝑋2, 𝑋3 and 𝑋4. In this section we first analyse separately the 

results of the different partners, then a comparison of the models’ sensitivity will be done.  

4.3.2.1. ENERGORISK 

Two ensembles were used to evaluate the results with this model: Σ𝑆𝑇𝐷 (8 available snapshots) and 

Σ𝐾𝑅𝑇1 (17 available snapshots). These two different groups of snapshots were used to evaluate the 

POD modes and eigenvalues. The relative information content (RIC) is given as a function of the 

POD truncation on Figure 30. The four first modes calculated for the two ensembles are given on 

Figure 31 and Figure 32. 
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a) Σ𝑆𝑇𝐷 

 

b) Σ𝐾𝑅𝑇1 

 

Figure 30 : RIC as a function of the number of modes for the POD applied to the snapshots 

of the different ensembles evaluated by ENERGORISK. 

  

  

Figure 31 : 4 first modes calculated from the snapshots of ensemble 𝜮𝑺𝑻𝑫.  
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Figure 32 : 4 first modes calculated from the snapshots of ensemble 𝜮𝑲𝑹𝑻.  

Different remarks can be done on the POD obtained from the different ensembles:  

- The RIC number given for the two ensembles on Figure 30 indicates that 4 to 5 modes are 

required to have 𝑅𝐼𝐶(𝑁𝑃𝑂𝐷) > 0.99. Also, the snapshots from the Σ𝐾𝑅𝑇1 ensemble add 

information not provided by the Σ𝑆𝑇𝐷 ensemble, requiring additional modes for the same level 

of representation.  

- The modes obtained seem to be mainly related to mixing for both ensembles. In fact, it is 

visible on Figure 31 and Figure 32 that the mode 1 of both POD shows important similarities 

to mode 1 obtained on 𝐶1 in §4.1.2. Mode 2 seems to be the symmetric of mode 1 and 

differences between the two ensembles start at mode 3. The variations of the mixing in the 

core are especially important for this model, which indirectly impacts the mixing of 

temperature between cold leg 1 and 2 affecting 𝑇𝐹𝐴,𝑜(𝑖).  

- For Σ𝑆𝑇𝐷, the mode 3 is closely related to the mixing map in the core between leg 1 and leg 

2. This mode reflects the way temperatures in cold leg 1 and 2 variations are propagated 

through the core. For Σ𝐾𝑅𝑇1, the resemblance is less obvious even though important values 

of the mode can be seen in the zone corresponding to high values of 𝐶1(𝑖).  

- When changing the range of the colormap for mode 2, structures related to the power 

distribution and mass flow are visible as it can be seen on Figure 33. In fact, lobes are visible 

at different locations near zones similar to the one visible on Figure 29a. Nevertheless, the 

low amplitude of the mode values on these one when compared to values on the lower left 

of the core indicate the relative low importance of these fluctuations compared to the ones 

related to mixing on this model.  
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a) Σ𝑆𝑇𝐷 

 

b) Σ𝐾𝑅𝑇1 

 

Figure 33 : Zoom on mode 2 from the two ensembles evaluated with ENERGORISK model 

On this specific model, correlations are hard to see as the output was sensitive to any modification 

of input parameters, they will thus not be shown in this paragraph.  

4.3.2.2. FRAMATOME 

Three ensembles were used to evaluate the results with this model. These three different ensembles 

of snapshots were used to evaluate the POD modes and eigenvalues. The relative information 

content (RIC) is given as a function of the POD truncation on Figure 34. The four first modes 

calculated for the three ensembles are given on Figure 35 Figure 36 and Figure 37. Different remarks 

can be done on the results. For the three ensembles, 4 modes are sufficient to obtain 𝑅𝐼𝐶(𝑖) ≥ 0.99.  

Also, the four modes obtained for the three ensembles show strong similarities with differences 

observed only for mode 3 where opposite sign is found for ΣSTD ensemble when compared to ΣGHM 

and Σ𝐾𝑅𝑇2. If we investigate the structure of the different modes, it is visible that mode 1 and 3 show 

symmetric topology between the left and right side of the core with amplitudes different between the 

upper and lower side of the core. Asymmetry is provided with modes 2 and 4.  

The correlation of components 𝑎1, 𝑎2, 𝑎3 and 𝑎4 of the POD computed for all snapshots on Σ𝐾𝑅𝑇2 

ensemble to the inputs 𝑋1, 𝑋2, 𝑋3 and 𝑋4 are indicated on Table 10. Small differences are observed 

between the correlations evaluated from different ensembles.  

- When the mode presents symmetry between leg 1 and 2, the correlation between the 

component and the inlet temperatures in cold leg 1 and 2 are of the same sign. On the other 

side, for the antisymmetric mode 2, the sign of the correlation 𝑐𝑜𝑟𝑟(𝑎2, 𝑋2) and 𝑐𝑜𝑟𝑟(𝑎2, 𝑋3) 

are of opposite signs.  

- The power 𝑃𝑐𝑜𝑟𝑒 impacts the value of components 𝑎1 and 𝑎3. The related modes both 

presents the lobes that can be seen on Figure 29a. In addition, the opposite sign found for 

mode 3 with Σ𝑆𝑇𝐷 is counterbalanced by the negative sign of the components when compared 

to the other ensembles.  

- The flowrate has a limited impact on 𝑇𝐹𝐴,𝑜(𝑖), expressed by the mode 4 which only impacts a 

small proportion of the core fuel assemblies located at the junction of the mixing zone 1 and 

4. In terms of amplitude, the low number of assemblies are nevertheless affected with 

variations going up to 0.6°𝐶.  
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a) Σ𝑆𝑇𝐷 

 

b) Σ𝐾𝑅𝑇2 

 

c) Σ𝐺𝐻𝑀 

 

Figure 34 : RIC as a function of the number of modes for the POD applied to the snapshots 

of the different ensembles. 

  

  

Figure 35: 4 first modes calculated from the snapshots of ensemble 𝜮𝑺𝑻𝑫 with FRAMATOME 

model. 
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Figure 36 : 4 first modes calculated from the snapshots of ensemble 𝜮𝑮𝑯𝑴 with 

FRAMATOME model. 

  

  

Figure 37 : 4 first modes calculated from the snapshots of ensemble 𝜮𝑲𝑹𝑻 with 

FRAMATOME model. 
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Table 10: FRAMATOME - Correlation of the components of the POD with the inputs – 

Importance of the correlation given with shades of orange.  

Ensemble Component 𝒄𝒐𝒓𝒓(𝒚, 𝑿𝟏) 𝒄𝒐𝒓𝒓(𝒚, 𝑿𝟐) 𝒄𝒐𝒓𝒓(𝒚, 𝑿𝟑) 𝒄𝒐𝒓𝒓(𝒚, 𝑿𝟒) 

Σ𝑆𝑇𝐷 

𝑦 = 𝑎1 -4,40E-02 -3,70E-01 -3,60E-01 -8,56E-01 

𝑦 = 𝑎2 9,51E-02 -6,73E-01 7,33E-01 -2,23E-02 

𝑦 = 𝑎3 -6,20E-03 -6,39E-01 -5,70E-01 5,16E-01 

𝑦 = 𝑎4 -9,94E-01 -4,40E-02 8,99E-02 3,24E-02 

Σ𝐺𝐻𝑀 

𝑦 = 𝑎1 -4,73E-02 -3,65E-01 -3,53E-01 -8,60E-01 

𝑦 = 𝑎2 8,91E-02 -6,81E-01 7,26E-01 -1,33E-02 

𝑦 = 𝑎3 3,66E-03 6,33E-01 5,84E-01 -5,08E-01 

𝑦 = 𝑎4 -9,95E-01 -4,13E-02 8,40E-02 3,79E-02 

Σ𝐾𝑅𝑇2 

𝑦 = 𝑎1 -4,76E-02 -3,67E-01 -3,59E-01 -8,57E-01 

𝑦 = 𝑎2 9,16E-02 -6,81E-01 7,27E-01 -2,12E-02 

𝑦 = 𝑎3 3,60E-03 6,35E-01 5,82E-01 -5,08E-01 

𝑦 = 𝑎4 -9,87E-01 -3,49E-02 8,58E-02 1,10E-01 

 

4.3.2.3. KIT 

Evaluations of KIT model were performed on Hadamard ensemble Σ𝐻𝐴𝐷. The 8 snapshots were then 

used to evaluate the POD modes and eigenvalues. The relative information content (RIC) is given 

as a function of the POD truncation on Figure 38. The values of the RIC show that 𝑁𝑃𝑂𝐷 = 4 is 

sufficient to obtain 𝑅𝐼𝐶(𝑁𝑃𝑂𝐷) ≥ 0.99. The four first modes calculated are given on Figure 39. It can 

be noticed that the three first modes show strong similarities to the one obtained by FRAMATOME 

model with the different ensembles. The correlation of the components to the input parameters are 

indicated in Table 11. The behavior of the components with variations of the input parameters is 

similar to what has been observed with the FRAMATOME model:  

- A strong anti-correlation to the power variations is visible on component 𝑎1, which is also 

moderately anti-correlated to the inlet temperature in cold leg 1 and cold leg 2.  

- Mode 2 which is antisymmetric between the legs 1 and 2 shows correlations of different signs 

for the temperature in these legs.  

- Mode 3 is correlated to both cold legs temperature variations and anticorrelated to the core 

total power. Also, in comparison to FRAMATOME’s model, the flowrate in cold leg 1 is slightly 

more important as the component associated to mode 3 shows more correlation to it.  

- Mode 4 is strongly anticorrelated to the flow rate in leg 1. Differences can be noticed with 

FRAMATOME mode 4 where the expression of this mode changes the field at the junction 

between leg 1 and leg 4 on the left-hand side of the figure as it can be seen on Figure 36d) 

for instance. In the case of KIT snapshots, the flowrate effect is strong on three FA at the 

junction between leg 1 and leg 2, and more moderate on different fuel assemblies which are 

more scattered in the core.  
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Figure 38 : RIC as a function of the number of modes for the POD applied to the snapshots 

of the different ensembles evaluated by KIT. 

  

  

Figure 39 : 4 first modes calculated from the snapshots of ensemble 𝜮𝑯𝑨𝑫 with KIT model.  

 

Table 11: KIT - Correlation of the components of the POD with the inputs – Importance of 

the correlation given with shades of orange. 

Ensemble Component 𝒄𝒐𝒓𝒓(𝒚, 𝑿𝟏) 𝒄𝒐𝒓𝒓(𝒚, 𝑿𝟐) 𝒄𝒐𝒓𝒓(𝒚, 𝑿𝟑) 𝒄𝒐𝒓𝒓(𝒚, 𝑿𝟒) 

Σ𝐻𝐴𝐷 

𝑦 = 𝑎1 -5,37E-02 -3,92E-01 -3,49E-01 -8,49E-01 

𝑦 = 𝑎2 1,38E-01 7,06E-01 -6,93E-01 -4,95E-02 

𝑦 = 𝑎3 2,51E-01 5,28E-01 6,25E-01 -5,17E-01 

𝑦 = 𝑎4 -9,56E-01 2,63E-01 8,36E-02 -9,54E-02 
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4.3.2.4. UNIPI 

Evaluation of UNIPI model were performed on ensembles Σ𝐻𝐴𝐷 and Σ𝐺𝐻𝑀(respectively 8 and 9 

computations). The snapshots associated to both ensembles were then used to evaluate the POD 

modes and eigenvalues. The relative information content (RIC) is given as a function of the POD 

truncation for each ensemble on Figure 40. The values of the RIC show that 𝑁𝑃𝑂𝐷 = 4 is sufficient 

to obtain 𝑅𝐼𝐶(𝑁𝑃𝑂𝐷) ≥ 0.99. The four first modes calculated on each ensemble are given on Figure 

41 and Figure 42.  

 

a) Σ𝐻𝐴𝐷 

 

b) Σ𝐺𝐻𝑀 

 

Figure 40 : RIC as a function of the number of modes for the POD applied to the snapshots 

of the different ensembles evaluated by UNIPI. 

The importance of mode 1 and 2 are slightly changed between the two ensembles with a relative 

information content 𝑅𝐼𝐶(𝑁𝑃𝑂𝐷 = 1) lower for evaluations on Σ𝐺𝐻𝑀 than for Σ𝐻𝐴𝐷. When looking more 

precisely the topology of all the modes, the structures are similar to the modes obtained by 

FRAMATOME and KIT. The same remarks can be made on the modes 1, 2 and 3. In addition, the 

mode 3 includes higher values near the junction between leg 1 and leg 2 which is not visible on the 

other partners modes. More important differences are visible on the mode 4 which impacts fuel 

assemblies at the junction between legs 1 and 2. The correlation of the components to the different 

inputs are given on Table 12. Remarks can be made on the correlation of the components to the 

different input parameters:  

- The correlations of components to the inputs show strong similarities to the results obtained 

with FRAMATOME and KIT models.  

- It should be noted that as for KIT, the parameter 𝑋1 corresponding to the flowrate in cold leg 

1 𝑄1 has more importance than in FRAMATOME model with higher correlation to the 

variations of component 𝑎3.  

- Small differences can be seen between the behavior of the model evaluated on Σ𝐻𝐴𝐷 and 

Σ𝐺𝐻𝑀 ensembles.  
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Figure 41 : 4 first modes calculated from the snapshots of ensemble 𝜮𝑯𝑨𝑫 with UNIPI model.  

 

  

  

Figure 42: 4 first modes calculated from the snapshots of ensemble 𝜮𝑮𝑯𝑴 with UNIPI model.  
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Table 12 : UNIPI - Correlation of the components of the POD with the inputs – Importance of 

the correlation given with shades of orange 

Ensemble Component 𝒄𝒐𝒓𝒓(𝒚, 𝑿𝟏) 𝒄𝒐𝒓𝒓(𝒚, 𝑿𝟐) 𝒄𝒐𝒓𝒓(𝒚, 𝑿𝟑) 𝒄𝒐𝒓𝒓(𝒚, 𝑿𝟒) 

Σ𝐻𝐴𝐷 

𝑦 = 𝑎1 -5,11E-02 -3,69E-01 -3,51E-01 -8,59E-01 

𝑦 = 𝑎2 -3,08E-02 -6,88E-01 7,25E-01 1,03E-03 

𝑦 = 𝑎3 3,01E-01 5,82E-01 5,67E-01 -4,99E-01 

𝑦 = 𝑎4 -9,49E-01 2,27E-01 1,75E-01 -1,12E-01 

Σ𝐺𝐻𝑀 𝑦 = 𝑎1 -4,88E-02 -3,64E-01 -3,44E-01 -8,44E-01 

𝑦 = 𝑎2 -2,99E-02 -6,95E-01 7,18E-01 9,63E-03 

𝑦 = 𝑎3 2,54E-01 5,83E-01 5,82E-01 -5,05E-01 

𝑦 = 𝑎4 -9,04E-01 1,91E-01 1,45E-01 -7,60E-02 

4.3.2.5. Comparison between partners 

The results of the sensitivity analysis done by using POD showed strong similarities between 

FRAMATOME, KIT and UNIPI models: 

- The total power in the core and the inlet temperature in cold leg 1 and 2 impact importantly 

the variations of 𝑇𝐹𝐴,𝑜(𝑖). The impact of power in the core is mainly brought by the expression 

of mode 1 and 3 while the impact of the temperatures in cold leg 1 and 2 are brought by 

mode 1, 2 and 3.  

- The flowrate in cold leg 1 impacts a more limited number of fuel assemblies in the core which 

are given by mode 4. The topology of this mode shows more variation between partners and 

is related to the evolution of the mixing maps in the core on the range covered by the input 

parameters.  

- The correlations of the POD components are similar when evaluated on different ensembles.  

In comparison, ENERGORISK model showed an increased sensitivity of the mixing in the core to 

the input parameters which made the emergence of correlations harder.  

The snapshots obtained with FRAMATOME, KIT and UNIPI models were used to find a POD base 

general to all three partners. In addition, ENERGORISK snapshots were projected on this base to 

see if correlations could emerge by finding an appropriate base. The relative information content for 

this POD base is given on Figure 43. The results indicate that 7 modes are required to satisfy 

𝑅𝐼𝐶(𝑁𝑃𝑂𝐷) ≥ 0.99. When compared to the RIC obtained from the POD applied separately to the 

different ensembles, additional modes are required to correctly represent the fluctuations. The 6 first 

modes are indicated on Figure 44. Different remarks can be made on these modes: 

- The three first modes show strong similarities to the ones obtained for the FRAMATOME, 

KIT and UNIPI models independently. Differences can be seen on mode 2 due to differences 

in the mixing between cold leg 1 and 2 but its expression still shows the mixing between legs 

1 and 2.  

- Differences start appearing from modes 4 to 6 which seem more related to the mixing of leg 

1 as their appearance impacts the boundaries between zone 1 and 4 and between 1 and 2. 

The mode 7 is not depicted on the figure  

The correlation between the components associated to the 7 first modes and the inputs parameters 

are calculated for different ensembles of the different CFD models and given on Table 13.  
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Figure 43 : RIC as a function of the number of modes  

  

  

  

Figure 44: 6 first modes calculated from all the snapshots evaluated with FRAMATOME, KIT 

and UNIPI models.  
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Table 13 : Correlation between the components of the POD and the input parameters 

evaluated on different CFD models and ensembles.  

Ensemble Component 𝒄𝒐𝒓𝒓(𝒚, 𝑿𝟏) 𝒄𝒐𝒓𝒓(𝒚, 𝑿𝟐) 𝒄𝒐𝒓𝒓(𝒚, 𝑿𝟑) 𝒄𝒐𝒓𝒓(𝒚, 𝑿𝟒) 

ENEKRT 

𝑦 = 𝑎1 -4,92E-02 -3,58E-01 -3,68E-01 -8,57E-01 

𝑦 = 𝑎2 1,18E-01 -7,31E-01 6,71E-01 -3,72E-02 

𝑦 = 𝑎3 -4,26E-02 4,91E-01 7,16E-01 -4,93E-01 

𝑦 = 𝑎4 -3,30E-01 -7,50E-01 4,57E-01 3,45E-01 

𝑦 = 𝑎5 6,34E-01 6,60E-01 2,01E-01 -3,42E-01 

𝑦 = 𝑎6 9,87E-01 -1,44E-01 1,14E-02 -2,92E-03 

𝑦 = 𝑎7 9,46E-01 -7,71E-02 7,09E-03 -2,99E-01 

FRAKRT 

𝑦 = 𝑎1 -5,43E-02 -3,59E-01 -3,54E-01 -8,41E-01 

𝑦 = 𝑎2 -1,11E-02 -7,22E-01 6,91E-01 -2,98E-02 

𝑦 = 𝑎3 2,85E-01 5,06E-01 6,13E-01 -5,30E-01 

𝑦 = 𝑎4 -3,04E-01 -7,23E-01 5,07E-01 3,46E-01 

𝑦 = 𝑎5 -7,19E-01 3,98E-01 3,89E-01 -1,41E-01 

𝑦 = 𝑎6 9,64E-01 1,06E-01 -2,37E-01 -5,04E-02 

𝑦 = 𝑎7 9,02E-01 1,64E-01 7,47E-02 -1,86E-01 

KITHAD 

𝑦 = 𝑎1 -5,17E-02 -3,74E-01 -3,63E-01 -8,52E-01 

𝑦 = 𝑎2 -1,44E-01 -7,58E-01 6,34E-01 -4,79E-02 

𝑦 = 𝑎3 2,66E-01 4,92E-01 6,64E-01 -4,96E-01 

𝑦 = 𝑎4 -6,97E-02 -6,71E-01 6,77E-01 2,92E-01 

𝑦 = 𝑎5 -5,57E-01 4,15E-01 6,37E-01 -3,01E-01 

𝑦 = 𝑎6 9,14E-01 -1,84E-01 -2,81E-01 -2,09E-01 

𝑦 = 𝑎7 8,32E-01 -3,77E-01 -2,55E-01 -2,63E-01 

UNIGHM 

𝑦 = 𝑎1 -5,49E-02 -3,83E-01 -3,53E-01 -8,49E-01 

𝑦 = 𝑎2 -3,31E-01 -6,06E-01 5,00E-01 -1,05E-01 

𝑦 = 𝑎3 -8,05E-02 4,53E-01 4,65E-01 6,97E-02 

𝑦 = 𝑎4 -6,33E-01 -4,38E-01 4,08E-01 2,08E-01 

𝑦 = 𝑎5 -1,30E-01 -1,80E-01 -1,66E-01 -3,53E-01 

𝑦 = 𝑎6 7,07E-01 -1,85E-03 -2,53E-01 -9,70E-02 

𝑦 = 𝑎7 6,25E-01 -1,47E-01 -1,89E-01 -1,25E-01 
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Different comments can be made regarding the sensitivity of each component to the input 

parameters:  

- Mode 1: all partners have the same behavior, with correlations to the four input parameters 

close to each other.  

- Mode 2: the correlation of 𝑎2 to 𝑋2 and 𝑋3 is similar for the different models with opposite 

signs of the evaluated correlation. Slight differences can be seen for the UNIPI model which 

yields a more important correlation to parameter 𝑋1 corresponding to the flowrate in cold leg 

1. 

- Mode 3: all models show positive correlation between the component 𝑎3 and the parameters 

𝑋2 and 𝑋3 which ranges between 0.4 and 0.7. Slightly lower values are found with UNIPI 

model on Σ𝐺𝐻𝑀 ensemble, in addition, all partners find an anticorrelation around -0.5 with the 

parameter 𝑋4 except the UNIPI model.  

- Mode 4: All models show correlation of 𝑎4 with 𝑋2 and 𝑋3 around the same amplitude. 

However, the correlation to the flowrate 𝑋1 differs between models: the UNIPI models yields 

high anti-correlation of this component to the flowrate, while ENERGORISK and 

FRAMATOME are slightly lower. In contrast, KIT does not show any correlation between the 

flowrate and this component.  

- Modes 5, 6 and 7: the components associated to these modes show important correlation to 

the flowrate. Differences are however seen between models especially regarding the sign of 

the correlation. However for all models, these components variations are mainly due to 

variations of the flowrate with lower effect of the temperatures in cold leg 1 and 2.  

An interesting result is the fact that ENERGORISK model shows similar behavior as the other models 

when projected in the same POD base. In this application, the projection of ENERGORISK 

snapshots on the modal base calculated with the snapshots of other partners seems to have the 

same effect than filtering the fluctuations of temperature due to the unstable mixing in the core. For 

a sensitivity study, this process has some interest as it allows to bring out the correlation between 

identified spatial fluctuations and variation of inputs. Nevertheless, the truncation error when 

reconstructing in such a base must be considered to reflect the real variability of the results. 

 

4.3.3. Evaluation of quantiles 

The same process applied to 𝑇𝐻𝐿,1(𝑡) to evaluate quantiles with the Metalog distribution in §4.2.4 is 

used to evaluate quantiles of 𝑇𝐹𝐴,𝑜(𝑖) with the different DS ensembles for the different CFD models. 

Quantiles evaluated on Σ𝐾𝑅𝑇2 with FRAMATOME model are given on Figure 45. The data is 

rearranged on an (x,y) plot on Figure 46 on which different quantiles are indicated. Also, examples 

are given on Figure 47 for the other models/ensembles: 

- The results are similar between FRAMATOME, UNIPI and KIT models: the minimum-

maximum difference is important in regions presenting local minimum or maximum, reaching 

values of 4°C. 

- An increased uncertainty is present on the ENERGORISK model where the amplitude 

between the 2.5% quantile and the 97.5% quantile reaches values over 5°C. In addition, 

regions which are not affected by the inputs’ uncertainty in FRAMATOME, UNIPI and KIT 

model are affected in ENERGORISK model. It should be mentioned that the results obtained 

with this model were found to be closer to experiments than FRAMATOME, UNIPI and KIT 

in deliverable D6.2 [3].  
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Figure 45: quantiles of 𝑻𝑭𝑨,𝒐(𝒊) evaluated with FRAMATOME model on 𝜮𝑲𝑹𝑻 ensemble. 

 

Figure 46 : Median temperature 𝑻𝑭𝑨,𝒐(𝒊) evaluated with FRAMATOME model on 𝜮𝑲𝑹𝑻 ensemble 

(solid black line). The interval between the 5% quantile and 95% quantile is filled in red, and 

the 2.5% 97.5% quantiles in salmon. 
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a) ENERGORISK - Σ𝐾𝑅𝑇1 

 

b) KIT - Σ𝐻𝐴𝐷 

 

c) UNIPI - Σ𝐺𝐻𝑀 

 

Figure 47: Examples of quantiles evaluated for different models on different ensembles. 

Median (solid black line), [2.5,97.5%] interval filled in salmon and [5,95%] interval filled in 

red 
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4.3.4. Conclusion on the uncertainty of 𝑻𝑭𝑨,𝒐 

In this section, statitstical moments and quantiles of 𝑇𝐹𝐴,𝑜(𝑖) were given for different models and 

different DS ensembles. In addition, a sensitivity analysis has been performed by applying the POD 

to snapshots obtained from the differents models. Different conclusions can be drawn based on the 

results presented: 

- The results obtained with FRAMATOME, KIT and UNIPI models showed similarities in terms 

of amplitude of the uncertainty standard deviation. In contrast, ENERGORISK’s model 

yielded standard deviation higher due to more important fluctuations of the mixing in the core 

during the transient. Their model was in fact more sensitive to input parameters, resulting in 

higher variance. As it has been indicated previsously, the use of the 𝑘 − 𝜔 SST model 

combined to the meshing strategy yield more unsteady results that might be smoothened by 

the models of the other partners. Further studies on the impact of the mesh should be done 

to verify this assumption.  

- The sensitivity analysis performed highlighted different structures of the fluctuations whose 

amplitude were correlated to some of the input variations.  

o For all models, the most important fluctuation mode was brought by simultaneous 

increase of the power and of the temperature in cold legs 1 and 2. This mode showed 

lobes on which fluctuations were found to be more important, and showed an 

important amplitude of the fluctuations on the lower part of the 2D field in zones 

influenced by legs 1 and 2. The topology of this mode is similar to the topology of the 

standard deviation obtained with the DS ensembles for most of the partners. 

o The differences between the partners were mostly due to differences in the mixing of 

cold legs 1 and 2. The boundaries between the two zones influenced by the two cold 

legs were different for the different models leading to different effects of the 

temperature variations in cold legs 1 and 2. Nevertheless, the impact has been found 

to be negligible in front of the variation of power in the core and in front of the varying 

temperatures in the cold legs 1 and 2.  

o The ENERGORISK model showed important fluctuation of the mixing in the core 

which covered up correlations to the inputs. However, the POD base calculated with 

snapshots of the other CFD models was used to evaluate components of 

ENERGORISK snapshots which were then used for the calculation of correlations. 

This process was found effective to bring up correlations between the components 

associated to the different modes and the inputs. The components showed similar 

behaviour of the ENERGORISK model compared to the others. Nevertheless, 

projecting in this base does not reflect the real variability of the snapshots as the 

truncation error in this case is significant.  

- As for 𝑇𝐻𝐿,1(𝑡), the correlations calculated with the different DS ensembles were close for 

FRAMATOME, KIT and UNIPI model. For ENERGORISK, the correlations were similar when 

projected on the POD base found with the other partners snapshots. In addition, noticeable 

changes in the confidence intervals were found when enforcing the fourth order moments. 

For instance, the UNIPI model evaluated on Σ𝐺𝐻𝑀 included a computation for which important 

deviation was found with other samples. The inclusion of this computation combined to the 

enforcement of the fourth order statistical moment induced a lower 2.5% quantile than when 

evaluated on Σ𝑆𝑇𝐷.  

In conclusion of the processing of the FA temperature average, the results were similar for most 

of the partners with an important effect of the power variations in the core and an amplitude of 
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the uncertainty around 1°C on average. Only ENERGORISK model presenting additional 

variations due to the less stable mixing was observed with values of the standard deviation 

increased at junctions between mixing zones reaching 2°C to 3°C.  

 

5. Conclusion 

In this study, the mixing experiment on Kozloduy-6 reactor has been reproduced with different CFD 

models. Four boundary conditions of the CFD model were selected for their impact on the quantities 

of interest and set as uncertain. Deterministic sampling was then used to find alternative 

representations of these random variables based on different ensembles that have been briefly 

described. Four ensembles were used: 

- The Standard ensemble Σ𝑆𝑇𝐷, enforcing the Random Variables (RV) marginal moments up 

to order 3 and mixed moments up to order 4 

- The Hadamard ensemble Σ𝐻𝐴𝐷, enforcing the RV marginal moments up to order 3 and mixed 

moments up to order 2.  

- The Gauss Heavy middle ensemble Σ𝐺𝐻𝑀, enforcing the RV marginal moments up to order 

4 and mixed moments up to order 2. 

- A hybrid ensemble Σ𝐾𝑅𝑇, with the same representation complexity than Σ𝐺𝐻𝑀 but combining 

evaluation with the Hadamard ensemble and the standard ensemble. Two versions Σ𝐾𝑅𝑇1 

and Σ𝐾𝑅𝑇2 were provided.  

These ensembles were then used to evaluate the CFD response which then enabled the assessment 

of the statistical moments of the outputs. The statistical moments were then used to fit a Metalog 

distribution which provided quantiles on the different outputs. 

 

In the first place, it should be noted that the propagation through the different CFD models yielded 

significant similarities. The estimated uncertainty is coherent with the amplitude of the inputs 

variations with moderate values for most of the models results presented in §4.1 §4.2 and §4.3. An 

important effect of mixing has been found due to its role in the calculation of temperature in the core 

based on cold legs temperature. In fact, the small differences between the propagated uncertainty 

which were found between the partners were mainly due to the difference of mixing in the core which 

affects the way temperature in cold legs 1 and 2 propagates through the core. On most of the models 

(FRAMATOME, KIT, UNIPI) the mixing fluctuations were shown to be negligible. However, the 

mixing was found to be more sensitive on ENERGORISK model which induced an increased 

uncertainty. It should also be mentioned that the results obtained with this model were slightly better 

for the calculation of the temperature in hot leg 1 as shown in §4.2.  

 

Also, the POD was used to make a brief sensitivity analysis and try to correlate the fluctuations of 

the temperature and mixing in the core to input parameters. Its use brought out modes of fluctuations 

related to the mixing map, the power distribution, and the flow rate distribution in the core. This 

decomposition was found to be effective to support assessment on the way variations of inputs were 

propagated through computations in the core. In addition, the use of POD on ENERGORISK’s model 

which showed initially no clear correlation of the fluctuations to the inputs’ fluctuations allowed to 

bring to light correlations which were similar to the other models. 
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In conclusion, the assessment of 𝑈𝑖𝑛𝑝𝑢𝑡𝑠 statistical moments was performed with DS and supported 

by POD which enabled to illustrate the effect of inputs on computations of the mixing coefficients 

and temperature in the core. DS was found to yield consistent results on the models which showed 

small fluctuations in time, yielding consistent results between partners and ensembles. The 

importance of evaluating simultaneous variations of parameters was also highlighted, thus, 

ensembles such as Σ𝐻𝐴𝐷, Σ𝐺𝐻𝑀 and Σ𝐾𝑅𝑇 should be preferred to Σ𝑆𝑇𝐷. In this specific case, the use 

of Σ𝐺𝐻𝑀 seem to be the best compromise between the number of computations and the accuracy of 

the assessed uncertainty. In contrast, the propagation through CFD models presenting more noisy 

data was more sensitive to the ensemble used, resulting in more discrepancy between ensembles 

and higher variance, which nevertheless remains moderate.  

 

In general, the results were found to be close from a model to another, whether it is for the 

computations of the quantities of interest, or their uncertainty. This important result 

increases the confidence we have for mixing simulation in a VVER vessel with CFD codes. 

 

Further studies could be done to study the impact of meshing and turbulence modelling on the 

unsteadiness of computations in order to give recommendation on modelling whether a low bias or 

low variance is sought. In addition, a 4D gaussian distribution was assumed for the input variables, 

in addition, independency between the four parameters was enforced. The resulting output 

distribution was found to be similar to the input, showing low dissymmetry and kurtosis. Alternative 

representations could be given to these random variables to study the impact on the output 

uncertainty: asymmetric distributions, covariance between parameters or even random variables 

inputs which are varying in time. Other parameters affecting the mixing in the core could be 

investigated to see their impact on the output uncertainty: swirl in cold legs, model parameters of 

explicit modelling of porous zones. Finally, a comprehensive study of uncertainty quantification could 

be performed to evaluate other sources of uncertainty (grid, experimental uncertainty, model).  
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A. Building ensemble 

Activation matrices  

Previous work has been done in the field of deterministic sampling providing ensembles that can be 

used as elementary bricks for the construction of the ensemble 𝚺 by using different operations 

described further on (aggregation, parametrization, and padding).  

The activation matrices that are used in the CAMIVVER application are: 

- The Standard matrix named Σ𝑆𝑇𝐷 

- The Hadamard matrix named Σ𝐻𝐴𝐷 

- The Binary matrix named Σ𝐵𝐼𝑁 

The ensembles are given for normalized random variables. In addition, the presented ensembles 

aim to enforce independence between parameters. These ensembles can then be transformed as 

indicated in [8] to add covariance between parameters. 

It should be noted that the following ensembles are used with equal weights. 

𝑤𝑖 =
1

𝑁Σ
 

 

Standard ensemble 

The Standard ensemble 𝚺𝑺𝑻𝑫 which originates from the Unscented Kalman Filtering (UKF) to 

propagate covariance [11] is one of the simplest ensembles in terms of complexity. Its expression 

for any order 𝑝 is as follows: 

𝚺𝑺𝑻𝑫 = √𝑝 ∙ (𝐼𝑝×𝑝 −𝐼𝑝×𝑝) 

This ensemble enables the propagation of covariance with 𝑁 = 2𝑝 points which allows to explore 

two values for each parameter. It can be shown that the Standard matrix encodes in the case of a 𝑝 

dimensional normal distribution the marginal moments up to order 3. In fact, the symmetry of the 

ensemble guarantees nil valued odd statistical moments. In addition, the second moment is verified. 

We obtain the following equation when evaluating the marginal moments of order 2 of the RV: 

∀𝑗 ≤ 𝑝, 〈𝛿𝑋𝑗
2〉 =

1

2𝑝
∙ (√𝑝)

2
+
1

2𝑝
∙ (−√𝑝)

2
= 1 

Which is the value awaited for a gaussian RV. For order 4, we obtain  

〈𝛿𝑋𝑗
4〉 =

1

2𝑝
∙ (√𝑝)

4
+
1

2𝑝
∙ (−√𝑝)

4
= 𝑝 

The value of 3 is expected for a normal distribution thus, this ensemble does not correctly represent 

the 4th marginal moment of a gaussian RV for 𝑝 ≠ 3. 

In conclusion, this ensemble correctly represents the RV up to order 3 with 2𝑝 samples. The low 

number of elements and the simplicity of use are its advantages; however, the Standard Ensemble 

presents some limitations for the propagation of covariance through a function 𝑓: 

- Only the partial derivative of the function 𝑓 are evaluated; if 𝑓 is nonlinear, the mixed 

derivative can have their importance which would lead to important differences with other 

ensembles taking them into account 

- When the dimension of the RV increases, the √𝑝 term in front of the matrix can scale 

importantly. For non-linear physics such as CFD, an increasing scaling of the samples would 

lead to bad results.   
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Hadamard ensemble 

The Hadamard ensemble 𝚺𝑯𝑨𝑫 originates from Hadamard matrix that can be built with recursive 

rules for instance with a method from Sylvester invented in 1867 

𝐻2𝑛 = {
1,   2𝑛 = 1

(
𝐻2𝑛−1 𝐻2𝑛−1

𝐻2𝑛−1 −𝐻2𝑛−1
),    2𝑛 > 1

 

This matrix is only defined to specific orders k, thus an additional operation is done to extend its 

construction to any order 𝑝. The smallest integer 𝑚 which is a power of 2 and such as 𝑚 ≥ 𝑛 + 1 is 

taken to build an Hadamard matrix on which 𝑝 columns are extracted: 

𝚺𝑯𝑨𝑫 = 𝐻𝑚(: ,2: 𝑝 + 1) 

This ensemble may look like the binary ensemble in reference [8] but is built differently. 

It can be shown that this Hadamard matrix correctly enforces correctly statistical moments up to 

order 3,  

∀𝑗 ≤ 𝑝, 〈𝛿𝑋𝑗
2〉 =

1

𝑁Σ
∙ 𝑁Σ ∙ (±1)

2 = 1 

In addition, its symmetry on each column ensures nil value for odd marginal moments as all values 

of a column add to zero. Regarding the fourth marginal moment: 

∀𝑗 ≤ 𝑝, 〈𝛿𝑋𝑗
4〉 =

1

𝑁Σ
∙ 𝑁Σ ∙ (±1)

4 = 1 

This value of the fourth marginal moments is different than what is expected from a normal 

distribution where the value 〈𝛿𝑋𝑗
4〉 = 3 is expected. 

When looking into crossed moment, the symmetry of the ensemble induces no covariance between 

columns as Hadamard ensemble ensures independence between columns. Nevertheless, for higher 

order mixed moments, the independence of the parameters is not enforced as all the combinations 

of +1 and -1 are not present in the matrix.  

In term of statistical moments, this ensemble is slightly less efficient than the Standard matrix, 

however, some qualities overcome its shortcomings for propagation through CFD: 

- All combinations of 2 parameters are present which enables evaluation of the function in 

different directions than the principal ones.  

- No scaling of the matrix when increasing the dimension of the RV 

Binary ensemble 

The last activation matrix presented in this paragraph is the Binary ensemble 𝚺𝑩𝑰𝑵 which is different 

from the Binary ensemble of reference [8]. This ensemble includes all combinations of 1 and -1 for 

𝑝 parameters and thus presents the advantage of enforcing total independence between parameters 

by testing all possible combinations of parameters up to mixed moment of order 𝑝. In contrast, this 

ensemble’s size is significantly higher than Hadamard ensemble with a total size of 2𝑝. Regarding 

marginal moments, the statistical moments are correctly represented up to order 3. The fourth order 

statistical moment is not correctly enforced for a normal distribution.  

 

Elementary operations 

The different matrices presented in the previous paragraph can be combined in order to find different 

ensembles with the chosen properties. The elementary operations presented in this document which 

are used to combine these matrices are:  

- Padding: consists of adding the 𝟎 = (𝟎,… , 𝟎) sample to the ensemble.  
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- Ensemble concatenation 

- Scaling of the activation matrices.  

These operations lead to the modification of the previous system (2-5) built for chosen statistical 

moments. The modification affects the weights values, and thus must be controlled to verify that the 

modification did not lead to high discrepancy or negative weights. In counterpart, the addition of 

degrees of freedom may enable the encoding of additional statistical moments of higher order. 

 

Padding and scaling 

Padding consists of adding 𝟎 = (𝟎, … , 𝟎) sample to the ensemble.  

𝚺𝐩𝐚𝐝𝐝𝐞𝐝 = (
𝟎
𝚺
) 

In addition, we differentiate the value of the weights associated to the ensemble 𝚺 and to the 0 vector 

When looking to the system (2-5), the equations are modified for the marginal moments. For 

instance, if we look for the standard activation matrix. The mean value is correctly encoded, however, 

when evaluating the second marginal moment of any column: 

∀𝑗 ≤ 𝑝, 〈𝛿𝑋𝑗
2〉 = 𝑤𝑆𝑇𝐷 ∙ (√𝑝)

2
+ 𝑤𝑆𝑇𝐷 ∙ (−√𝑝)

2
= 2𝑝 ∙ 𝑤𝑆𝑇𝐷 

In addition, the sum of weights must be equal to 1: 

𝑁ΣSTD ∙ 𝑤𝑆𝑇𝐷 + 𝑤0 = 1 

The enforcement of the 2nd order statistical moments is equivalent to : 

〈𝛿𝑋𝑗
2〉 = 1 

2𝑝 ∙ 𝑤𝑆𝑇𝐷 = 1 

Thus:  

𝑤𝑆𝑇𝐷 =
1

2𝑝
 

𝑤0 = 1 −
1

2𝑝
× 2𝑝 = 0 

In this case, the padding has been used but the enforcement of the variance is possible only with 

𝑤0 = 0.  

To increase the dimension of the space of solutions, a scaling factor 𝑎 is added to the initial ensemble 

𝚺𝑺𝑻𝑫. With this scaling factor, enforcing the second order marginal moment results in: 

𝑗 ≤ 𝑝, 〈𝛿𝑋𝑗
2〉 = 𝑤𝑆𝑇𝐷 ∙ (𝑎√𝑝)

2
+ 𝑤𝑆𝑇𝐷 ∙ (−𝑎√𝑝)

2
= 2𝑎2𝑝 ∙ 𝑤𝑆𝑇𝐷 

𝑤𝑆𝑇𝐷 =
1

2𝑎2𝑝
, 𝑤0 = 1 −

1

2𝑎2𝑝
× 2𝑝 = 1 −

1

𝑎2
 

Now an infinite number of solutions which are included in a 1D linear space exist and allow to encode 

the variance of a normal distribution (〈𝛿𝑋𝑗
2〉 = 1). We can now observe the fourth moment and see if 

a specific value of 𝑎 can reproduce the fourth order marginal moment: 

∀𝑗 ≤ 𝑝, 〈𝛿𝑋𝑗
4〉 = 𝑤𝑆𝑇𝐷 ∙ (𝑎√𝑝)

4
+ 𝑤𝑆𝑇𝐷 ∙ (−𝑎√𝑝)

4
= 2𝑤𝑆𝑇𝐷𝑎

4𝑝2 = 2 ∙
1

2𝑎2𝑝
∙ 𝑎4𝑝2 = 𝑎2𝑝 

For a normal distribution, the enforcement of the 4th marginal moments is equivalent to: 

𝑎 = √
3

𝑝
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It should be noted that for 𝑝 > 3, enforcing the fourth order moment leads to negative values of 𝑤0 

which must be avoided as it can lead to incoherent values for even statistical moments (negative 

values). Reproducing the process with Hadamard activation matrix leads to better results.  

 

Matrix concatenation and scaling 

Ensembles can be concatenated and scaled to gain degrees freedom on the system (2-5) and 

enforce additional statistical information.  

If we take for instance the Standard activation matrix and the Hadamard matrix Σ𝑆𝑇𝐷 and Σ𝐻𝐴𝐷 and 

denote their respective weights 𝑤𝑆𝑇𝐷 and 𝑤𝐻𝐴𝐷.  

As both ensembles are symmetric, the aggregated matrix is also symmetric and automatically 

encodes the mean value and skewness of the RV. Enforcing the second and fourth marginal 

moments translates as follows:  

𝑁ΣSTD ∙ 𝑤𝑆𝑇𝐷 +𝑁ΣHAD ∙ 𝑤𝐻𝐴𝐷 = 1 

2 ∙ 𝑤𝑆𝑇𝐷 ∙ (±√𝑝)
2
+ 𝑁ΣHAD ∙ 𝑤𝐻𝐴𝐷 ∙ (±1)

2 = 1 

2 ∙ 𝑤𝑆𝑇𝐷 ∙ (±√𝑝)
4
+ 𝑁ΣHAD ∙ 𝑤𝐻𝐴𝐷 ∙ (±1)

4 = 3 

Let’s take the case of  a 4D RV to simplify. The system is reduced to the following equations: 

𝑤𝑆𝑇𝐷 + 𝑤𝐻𝐴𝐷  =
1

8
 

32 ∙ 𝑤𝑆𝑇𝐷 + 8 ∙ 𝑤𝐻𝐴𝐷 = 3 

This system has a solution: 

𝑤𝑆𝑇𝐷 =
1

12
, 𝑤𝐻𝐴𝐷 =

1

24
 

As for the padding, concatenation can be used with scaling by defining two real numbers 𝑎 and 𝑏 

scaling the matrices 𝚺𝟏 and 𝚺𝟐. This may increase the degrees of freedom of the linear system solved 

to deduce the weights and potentially lead to the addition of information that can be encoded. 
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B.  CEA results 

 

The results obtained with CEA model are given in the following appendix. Their simulations are done 

with the following proces:  

- A steady state is simulated 

- The transient calculation is performed by frozing the flow and imposing only the temperature 

evolution.  

In addition, the power in the core is not implemented. This is equivalent of considering only 3 

uncertain parameters being the 𝑋1, 𝑋2 and 𝑋3 which are respectively, the flowrate 𝑄1, the 

temperature in cold leg 2 𝑇𝐶𝐿2 and the temperature in cold leg 1 𝑇𝐶𝐿1 

a. Mixing coefficient 

The mixing coefficient obtained at 800s for these computations are the ones obtained at the steady 

state as the flow solver is frozen during the transient. The mean value and standard deviation 

obtained for the different mixing zones are given respectively on Figure 48 and Erreur ! Source du 

renvoi introuvable.. It should be noticed that the view is rotated in comparison to the other partners.  

Also, the standard deviation is found relatively stable for the different inputs that were scanned.  

 

 
 

  

Figure 48 : Mean value of the mixing coefficients 𝑪𝟏, 𝑪𝟐, 𝑪𝟑 and 𝑪𝟒 
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Figure 49 : Standard deviation of the mixing coefficients 𝑪𝟏, 𝑪𝟐, 𝑪𝟑 and 𝑪𝟒 

 

b. FA temperature average 

The mean value and standard deviation of the average temperature evaluated on each FA is given 

Figure 50. 

 

 
 

Figure 50 : Mean value and standard deviation of the FA temperature evaluated with GHM 

ensemble for CEA computations 
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The POD is applied to the 9 snapshots of the FA temperature. The RIC number is given as a function 

of the number of POD modes on Figure 51 while the four first modes are given Figure 52.  

 

Figure 51 : RIC as a function of the number of modes for the POD applied to the snapshots 

of the different ensembles evaluated by CEA with GHM ensemble. 

 

  

  

Figure 52 : 4 first modes calculated from the snapshots of ensemble 𝜮𝑮𝑯𝑴.  
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The sensitivity of this quantity to the inputs is similar to the other partners:  

- The cold leg temperature 1 and 2 variations induce variations in the top side of the core with 

an amplitude of approximatively 1°C.  

- Higher amplitudes are found at the junction between mixing zones 1 and 2. In this zone, the 

standard deviation reaches 2°C.  

- The standard deviation on the lower side of the core is much lower with values around 0.25°C. 

- In contrast to the other partners models, the lobes that were visible due to the core power 

variations are not seen for these computations which seems logical. In fact, for these 

calculations of CEA model, the power variations were not implemented.  

 

c. Hot leg 1 temperature THL,1 

The core power is not implemented in this calculation which induces much lower temperature than 

the other partners.  

 

 

Figure 53: increase of temperature in hot leg 1 𝑻𝑯𝑳,𝟏 for the different inputs scanned.  

 

 

Figure 54: Time evolution of 𝑻𝑯𝑳,𝟏 – Mean value (dotted black), median value (solid white), 

𝑸𝟓%, 𝑸𝟗𝟓% (filled red), 𝑸𝟐.𝟓%, 𝑸𝟗𝟕.𝟓% (filled salmon)   


